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Chronic septal infarction confers right ventricular protection during
mechanical left ventricular unloading

James Mau, BSc, MB, BS,a Stuart Menzie, MB, BS, FRACS,a Yifei Huang, MD, PhD,a Michael Ward, MB,

BS, PhD, FRACP,b and Stephen Hunyor, MB, BS, MD, MTM, FRACP, FACCa,b

Objective: Right ventricular failure manifests in 25% of left ventricular assist device recipients because of ven-

tricular coupling mechanism disruption. Septal ischemia accentuates this process, but the effect of septal infarc-

tion has not been elucidated. Right ventricular response to incremental left ventricular unloading was studied in

sheep with septal infarction.

Methods: Septal infarction was induced in 6 sheep using ethanol delivery into the main septal perforating artery.

Six shams avoided ethanol. Load-independent and in-series right ventricular response to incremental (0%–

100%) left ventricular unloading was measured 4 weeks later. Dimensions of whole heart, wall thickness, and

chamber volumes were obtained using sonomicrometers. Selective perfusion with triphenyltetrazolium quantified

septal damage.

Results: Right ventricular preload-recruitable-stroke-work, contractility, and ejection fraction were lower at 75%
and 100% left ventricular unloading in sham compared with infarcted animals (75%: 26.3 � 3.4, 0.70 � 0.15,

and 23.9 � 4.6 vs 37 � 2.6 erg*10^3, 0.99 � 0.18 mm Hg/mL, and 35.5% � 3.4%, all P< .01, 100%: 24.8 �
4.5, 0.67� 0.14, and 23.8� 5.8 vs 36.0� 4.6 erg*10^3, 0.90� 0.09 mm Hg/mL, and 32.7%� 11.0%, all P<
.01). Central venous pressure was higher at 75% and 100% unloading in sham compared with infarcted animals

(75%: 8.6 � 1.0 vs 4.5 � 1.0, 100%: 12.4 � 0.8 vs 3.4 � 1.0 mm Hg, all P< .01). Right ventricular cardiac

output was less in shams with 100% unloading (1.2 � 0.2 L/min vs 2.1 � 0.3 L/min, P< .01). End-diastolic

and end-systolic right ventricular short-axis dimension at 75% and 100% unloading was greater in sham com-

pared with infarcted animals (75%: 34.4 � 5.5 mm and 29.1 � 5.5 mm vs 25.6 � 4.7 mm and 20.5 � 4.0 mm;

100%: 37.6� 6.6 mm and 29.9� 5.9 mm vs 25.5� 3.9 mm and 21.1� 3.8 mm, all P<.01). Prolonged diastolic

relaxation (Tau) in infarcted animals was normalized with 75% and 100% unloading.

Conclusion: High-level (�75%) left ventricular unloading causes right ventricular dilatation and compromised

function. Chronic septal damage, however, confers protection by preserving right ventricular dimensions.
Implantation of left ventricular assist devices (LVADs) for

the treatment of heart failure has increased in the post

REMATCH era,1 with several devices now approved as

destination therapy.2,3 However, LVAD placement is com-

plicated by perioperative right ventricular (RV) failure in

up to 25% of recipients.4,5 This leads to inadequate

LVAD filling and reduced cardiac output (CO), and if severe

often necessitates placement of an additional device to sup-

port right-sided circulation,5 with associated high risk and
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costs.2 Prolonged inotrope use is often required, and ele-

vated central venous pressure (CVP) leads to compromised

multiple organ function.6 Thus, prediction of RV failure sus-

ceptibility before commencement of LVAD support could

minimize morbidity and mortality, and reduce operating

room and intensive care costs. In the absence of coexisting

heart pathology, LVAD use has been shown to indepen-

dently alter RV contractility,7 load,8 and compliance.9 The

resulting effects on septal geometry lead to disruption of

mechanisms that regulate ventricular interdependence10-12

and affect RV pressures and volumes. Temporary septal is-

chemia during high-level left ventricular (LV) unloading has

been shown to accentuate these changes.13 However, the ef-

fects of irreversible septal damage with associated changes in

septal tissue compliance and contractility remain to be eluci-

dated. Refinement of septal ablation techniques14 has promp-

ted such a study in a large animal model. Resulting pathology

resembles that seen clinically in humans after acute infarction

of the septal perforating artery supply area.15,16 We previ-

ously showed that acute and chronic RV hemodynamic re-

sponses are distinctly different after septal injury, the

former suggestive of paradoxical motion and the latter
rgery c July 2009
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Abbreviations and Acronyms
CO ¼ cardiac output

CVP ¼ central venous pressure

ED ¼ end diastolic

EF ¼ ejection fraction

ES ¼ end systolic

LV ¼ left ventricular

LVAD ¼ left ventricular assist device

PRSW ¼ preload recruitable stroke work

PTSMA ¼ percutaneous transluminal septal

myocardial ablation

RV ¼ right ventricular

suggestive of reduced compliance and buttress formation.17

A chronic model of septal dysfunction using percutaneous

transluminal septal myocardial ablation (PTSMA) was

induced in sheep prior to mechanical LV unloading using

a centrifugal device. Both load-independent18 and in-series

RV hemodynamic function were measured.

MATERIALS AND METHODS
Anesthesia

Eighteen Border Leicester cross sheep (body weight 61.7� 8.8 kg) were

used in this study. The protocol was approved by the Institutional Animal

Care and Ethics Committee, and animals received humane care in compli-

ance with the ‘‘Guide for the Care and Use of Laboratory Animals’’ pre-

pared by the Institute of Laboratory Animal Resources, National Research

Council, 1996. Anesthesia was induced by alfaxalone (5–10 mg/kg, Al-

faxan-CD RTU; Jurox Pty Ltd, Rutherford, Australia) and maintained

with 50% oxygen, 45%/50% nitrous oxide, and approximately 2% isoflur-

ane (Mayne-Pharma, Melbourne, Australia). Regular blood gas measure-

ments were used to maintain physiologic ventilation and oxygenation.

Study Design
All animals were acclimatized for at least 2 weeks before randomization

into 2 experimental arms involving selective percutaneous over-the-wire

cardiac catheterization of the main septal perforating artery (MSPA) with

either sham or active PTSMA. After a 4-week recovery period, RV hemo-

dynamic and dimensional changes were measured in response to incremen-

tal LV unloading (0%–100% in 4 equal steps) using a Biomedicus

centrifugal pump. Hemodynamic measurements followed at least 30 min-

utes of stable anesthesia and were taken at end expiration. After functional

profiling, the heart was harvested for histologic analysis.

Baseline Ablative Procedure
Right and left jugular veins and the right carotid artery were

cannulated, and a 53-cm bipolar pacemaker lead (Medtronic Capsure

SP-4524; Medtronic, Minneapolis, Minn) was secured to the RV apex.

A single-chamber pacemaker (Sigma Series SR 300; Medtronic) was set

to activate at a hysteresis of 50 bpm and pace at 80 bpm as a rescue device

for heart block. A 2.0 3 9-mm over-the-wire balloon catheter (Maverick

SoftLEAP Boston Scientific, Natick, Mass) was mounted on a 0.014-inch

hydrocoat guidewire (Hi Torque Guidant Balance Middleweight; Guidant

Corporation, St Paul, Minn) and guided into the MSPA angiographically

via the carotid artery before being positioned with proximal clearance of

the left anterior descending. Correct positioning of the balloon markers

within the MSPA with subsequent angiographically verified arterial
The Journal of Thoracic and C
patency was considered completion of a sham-ablative procedure. For sep-

tal ablation, the balloon was inflated to 8 ATM, and an immediate bolus

volume of 0.6 mL 99.6% ethanol was delivered. Ten minutes after balloon

deflation and removal, MSPA closure was verified angiographically. Pace-

maker performance was checked 4 weeks later, immediately before termi-

nal hemodynamic assessment.

Left Ventricular Unloading and Terminal
Hemodynamic Assessment

Four weeks after septal ablation, Millar catheters were positioned in the

LV and RV, and a 7F triple lumen Swan-Ganz catheter was positioned in the

pulmonary circuit. The heart and great vessels were accessed through a left

thoracotomy with removal of the fifth rib. Transonic flow probes (MA-16

and MA-20PAX; Transonic Systems Inc, Natick, NY) were placed around

the ascending aorta and pulmonary trunk after incision of the pericardium

from apex to its reflection. Ten sonomicrometer crystals (2 mm Silastic; So-

nometrics Corp, Ontario, Canada) were attached in epicardial and endocar-

dial positions (Figure 1). Before implantation, paired crystals underwent bench

calibration in normal saline solution to verify signal strength and accuracy. The

ascending aorta was cannulated at the division of the brachiocephalic trunk us-

ing a 20F reinforced pump head outflow cannula (Select Series 72220; Med-

tronic Inc) and secured with 2 snugged 4-0 Prolene purse string sutures. The

left atrial appendage was isolated and cannulated using a 36F inflow cannulae

(DLP-68136; Medtronic Inc) that traversed the mitral valve. The distal cannula

tip was positioned approximately 25 mm above the LV apex. The cannulae

were connected to a centrifugal hemopump (Biomedicus series 540/BP-80

pump head; Medtronic Inc), and tubing dead space was filled using 400 mL

heparinized Hartman’s solution. An automated coagulation timer (ACT-II;

Medtronic Inc) monitored clotting status, with activated clotting time main-

tained using heparin at 230 to 250 seconds. Actual mechanical bypass values

were matched with values from the pulmonary flow probe. All hemodynamic

measurements were assessed at 4 incremental levels of LV unloading (0%,

lines clamped, to 100%, as measured by pulmonary flow probe). Thirty

minutes of stable unloading preceded all hemodynamic measurements, which

included ejection fraction (EF), CVP, RV CO, Tau, Ees, and preload recruit-

able stroke work (PRSW). RV volume was derived from an ellipsoid

subtraction model19 with SV calibrated against pulmonary flow probe values.

Septal Geometric, Functional, and Histologic
Assessment

Crystal positions, confirmed at autopsy to be in an equatorial plane

across the cardiac short axis, measured RV and LV internal dimension

and LV, RV free-wall, and septal thickness. Histologic analysis involved se-

lective MSPA perfusion using 1% triphenyltetrazolium solution and simul-

taneous differential staining of the left main and right coronary arteries.

Data Analysis
End-diastolic (ED) and end-systolic (ES) dimensions were analyzed as

described previously.17 ED was defined as the time of peak electrocardio-

gram-R wave and LV and RV ES as the point of zero aortic or pulmonary

flow, respectively. Steady-state hemodynamic parameters were calculated

as the average of 8 to 10 beats. PRSW relationship was calculated from

the plot of SW against loading end-diastolic volume and ESPVR slope as

described previously.20 Coded randomized digital photos were analyzed

by a blinded operator using planimetry (Sigma Scan Image v2.03, SPSS

Inc, Chicago, Ill).

Statistical Analysis
Results are reported as means or percentages� standard deviation as ap-

propriate. For all parameters, comparisons between groups were calculated

using either a 2-tailed t test for parametric distributions or a Mann–Whitney

rank-sum test for nonparametric distributions (SigmaStat Statistical

Software v2.03; SPSS Inc, Chicago, Ill).
ardiovascular Surgery c Volume 138, Number 1 173
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FIGURE 1. Cardiac long-axis and mid-papillary short axis sections showing implanted sonomicrometer crystal positions. Epicardial crystal placements:

1 and 2, base and apex dimension; 3 and 4, anterior and posterior midpapillary short axis dimension; 5 and 7, LV plus RV lateral mid-papillary short axis

dimension. Endocardial crystal placements: 6 and 9, septal LV and RV mid-papillary surface; 8 and 10, free wall LV and RV mid-papillary surface.
RESULTS
Six animals for both ablation and sham groups were used for

analysis. Two animals died acutely of heart failure or irrecov-

erable arrhythmias after PTSMA, and 3 others died after place-

ment of sonomicrometer crystals or LV unloading device. One

animal was excluded because amiodarone had been used.

Load-Independent Systolic and Diastolic Function
Load-independent hemodynamic data in Figure 2 shows

stable RV PRSW in PTSMA animals across all assist levels,

averaging 47.8 � 7.0 erg*10^3/mL. In sham animals, de-

spite stability with 0%, 25%, and 50% unloading (averag-

ing 48.1� 10.8 erg*10^3/mL), RV PRSW decreased to 35.0

� 4.5 erg*10^3/mL, P � .01 with 75% unloading, and re-

mained at this level with 100% unloading (33.0 � 6.0

erg*10^3/mL, P� .01). Values with 75% or greater unload-

ing were comparatively lower in the sham group (35.0� 4.5

and 33.0 � 6.0 erg*10^3/mL vs 49.2 � 3.5 and 47.9 � 6.1

erg*10^3/mL, P � .01). RV Ees in PTSMA animals re-

mained stable across all assist levels, averaging 0.93 �
0.12 mm Hg/mL. In sham animals, it increased with 25%
unloading (1.12 � 0.15 mm Hg/mL vs 0.94 � 0.13 mm

Hg/mL; P � .01) but returned to baseline with 50% (0.88

� 0.08 mm Hg/mL vs 0.92 � 0.13 mm Hg/mL; P ¼ .472)

before decreasing to 0.70 � 0.15 mm Hg/mL and 0.67 �
0.14 mm Hg/mL with 75% and 100% unloading, respec-

tively. Values at 75% or greater unloading were lower in

sham animals (0.70 � 0.15 mm Hg/mL and 0.67 � 0.14

mm Hg/mL vs 0.99 � 0.18 mm Hg/mL and 0.90 � 0.09

mm Hg/mL, P � .01). Before device insertion and with

0% and 25% unloading, RV Tau was prolonged in PTSMA

(no device: 28.0� 4.0 ms vs 22.8� 4.5 ms, 0%: 32.5� 4.8

ms vs 21.5 � 2.0 ms, 25%: 27.5� 4.9 ms vs 26.0 � 4.9 ms
174 The Journal of Thoracic and Cardiovascular Su
sham; P � .01); however, PTSMA induced prolongation

normalized with 50%, 75%, and 100% unloading.

Load-Dependent Right Ventricular Function
RV EF (Figure 3) remained stable in PTSMA animals inde-

pendently of LV unloading, averaging 34.8% � 9.8%. In

contrast, RV EF decreased in sham animals to 23.9% �
4.6% with 75% and 100% unloading (P � .01) and was

lower compared with equivalent PTSMA values (75%:

23.9% � 4.6% vs 35.5% � 3.4%, 100%: 23.8% � 5.8%
vs 32.7%� 11.0%, all P� .01). CVP remained stable across

all assist levels in PTSMA animals but increased in the sham

group from 4.2� 1.7 mm Hg with 50%unloading to 8.6� 1.0

mm Hg with 75%, and to 12.4 � 0.8 mm Hg with 100%
unloading (all P� .01). Values with 75%or greater unloading

were comparatively higher in sham compared with PTSMA

(75%: 8.6 � 1.0 mm Hg and 12.4 � 0.8 mm Hg vs 4.5 �
1.0 mm Hg, 100%: 3.4 � 1.0 mm Hg PTSMA, all P �
.01). RV CO was stable in PTSMA animals during all levels

of unloading, averaging 2.1� 0.3 L/min. In sham animals, af-

ter being stable with 0% to 75% unloading averaging 2.3 �
0.5 L/min, it dipped by approximately 50% with 100%
unloading (1.2� 0.2 L/min vs 2.1 � 0.3 L/min, P � .01).

Dimensional Changes
RV and LV internal short-axis dimensions are summa-

rized in Table 1. There were no significant differences in ei-

ther group between RV and LV ED and ES internal

dimensions with 0%, 25%, and 50% LV unloading. How-

ever, respective RV dimensions increased from 27.8 � 6.0

mm and 21.7 � 5.9 mm with 50% unloading to 34.4 �
5.5 mm and 29.1 � 5.5 mm with 75% unloading (P �
.01) and were significantly higher when compared with
rgery c July 2009
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equivalent PTSMA values (34.4 � 5.5 mm and 29.1 � 5.5

mm vs 25.6 � 4.7 mm and 20.5 � 4.0 mm; P � .01). This

pattern persisted with 100% unloading (37.6 � 6.6 mm

and 29.9 � 5.9 mm vs 25.5 � 3.9 mm and 21.1 � 3.8

mm; P � .01).

Contrasting those of the RV, LV ED and ES internal

short-axis dimensions decreased from 46.1 � 4.4 mm with

50% to 37.7� 5.0 mm with 75% unloading in shams versus

41.7 � 6.2 mm and 34.5 � 2.5 mm in PTSMA (P � 0.01),

and persisted with 100% unloading (40.1 � 6.3 mm and

32.7 � 2.6 mm in sham vs 46.3 � 4.1 mm and 39.0 � 3.9

mm in PTSMA; P � .01).

In PTSMA animals, internal ventricular dimensions were

preserved across all levels of LV unloading and averaged

25.3 � 3.9 and 20.3 � 3.7 for ED and ES in the RV and

46.3 � 4.5 and 38.8 � 4.2 for ED and ES in the LV. Sum-

mative RV and LV dimensions remained unchanged for

both sham and PTSMA animals.

FIGURE 2. Load-independent hemodynamic effects of LV unloading in

sham and PTSMA animals. RV PRSW, Right ventricular preload recruitable

stroke work; RV Ees, right ventricular end-systolic elastance; RV Tau, time

(ms) of RV diastolic relaxation constant; PTSMA, percutaneous translumi-

nal septal myocardial ablation.
The Journal of Thoracic and C
Validation of Septal Dysfunction
Effects of PTSMA on regional septal, LV, and RV free

wall thickening are summarized in Figure 4, A, which shows

a reduction in septal thickening in PTSMA animals com-

pared with sham (18.1% � 2.6% vs 6.9% � 3.6%; P �
.01) and no difference between groups in free wall thicken-

ing (14.1% � 3.7% and 4.5% � 2.3% vs 13.7% � 3.6%
and 4.8% � 3.5%, respectively). PTSMA animals had in-

creased paced beats compared with sham (25.6% �
11.1% vs 3.9% � 2.7%, P � .01, Figure 4, B).

MSPA supply regions were similar in the 2 groups (sham

vs PTSMA: 38.2% � 5.3% and 38.3%� 6.1% of the LV-

septal surface area, P ¼ .956; 40.2% � 13.9% and 36.3%
� 9.2% of the RV-septal surface area, P¼ .575, 26.2.2%�
10.8% and 25.8%� 8.4% of total septal weight, P¼ .962).

Histologic effects of PTSMA were confined to the septum

(Figure 5), where necrotic tissue by triphenyltetrazolium

perfusion in ablated septa was higher at 18.7% � 2.0% of

the septal tissue by weight compared with 4.7% � 8.5%
of sham (P ¼ .014).

FIGURE 3. In-series hemodynamic effects of LV unloading in sham and

PTSMA animals. RVEF, Right ventricular ejection fraction; CVP, central

venous pressure; COp, pulmonary artery cardiac output; PTSMA, percuta-

neous transluminal septal myocardial ablation.
ardiovascular Surgery c Volume 138, Number 1 175
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TABLE 1. LV, RV, and summed internal dimensions at end diastole and end systole in sham and PTSMA animals during increasing levels of

LV unloading

0 25 50 75 100

LVAD unloading (%) ED ES ED ES ED ES ED ES ED ES

RV ID

S 27.9 � 6.6 22.3 � 6.2 27.2 � 5.9 22.5 � 5.9 27.8 � 6.0 21.7 � 5.9 34.4 � 5.5* 29.1 � 5.5* 37.6 � 6.6* 29.9 � 5.9*

P 25.6 � 4.4 20.9 � 4.2 24.7 � 3.7 19.8 � 3.4 25.3 � 4.1 19.4 � 4.1 25.6 � 4.7* 20.5 � 4.0* 25.5 � 3.9* 21.1 � 3.8*

LV ID

S 47.7 � 3.2 39.6 � 2.4 47.2 � 3.2 39.2 � 3.4 46.1 � 4.4 37.7 � 5.0 41.7 � 6.2* 34.5 � 2.5* 40.1 � 6.3* 32.7 � 2.6*

P 48.1 � 5.0 40.3 � 4.0 46.7 � 4.6 39.3 � 4.0 45.5 � 4.9 38.2 � 5.1 44.7 � 4.8* 37.3 � 5.9* 46.3 � 4.1* 39.0 � 3.9*

Summed ventricular ID

S 75.6 � 7.7 61.9 � 6.9 74.4 � 7.9 61.5 � 7.8 73.9 � 7.9 59.4 � 7.9 76.1 � 7.6 63.7 � 5.2 77.7 � 4.8 62.6 � 6.4

P 73.7 � 7.7 61.1 � 7.3 71.4 � 7.0 59.1 � 6.7 70.7 � 8.0 57.6 � 7.7 70.4 � 7.8 57.8 � 7.0 71.9 � 6.1 60.1 � 6.7

LVAD, Left ventricular assist device; RV, right ventricle; LV, left ventricle; ED, end diastolic; ES, end systolic; ID, internal dimension; S, sham, P, PTSMA. * Statistical significance

(P � .01) between sham and PTSMA groups.
DISCUSSION
The major findings of the present study are that 75% or

greater LV unloading (i) induces LV volume reduction

and RV volume expansion that contribute to load-indepen-

dent RV dysfunction and (ii) leads to deterioration of in-se-

ries hemodynamic function, resulting in RV failure. Also, in

the presence of chronic septal injury (iii) RV geometry and

load-independent and in-series function are preserved, and

(iv) this RV protection results from chronic septal fibrosis

and associated septal dysfunction.

Load-Independent and Geometric Right Ventricular
Response to Left Ventricular Unloading

It is clear from our results on load-independent and geo-

metric findings that 75% or greater unloading degrades in-

trinsic load-independent RV function in normal hearts.

This finding reinforces in-series hemodynamic changes at

equivalent levels of unloading and is substantiated by geo-

metric data. The two combine to cause collapse of the LV

and dilatation of the RV. This finding supports the results

of load-dependent investigations,7 but contrasts with find-

ings of load-independent function that suggests their preser-

vation while in-series hemodynamic function deteriorates.9
176 The Journal of Thoracic and Cardiovascular Sur
These differences may relate to the degree of unloading

achieved and the more robust assessment of RV volume

used in our experiments.17 Summative ventricular dimen-

sions were unaltered across all levels of unloading irrespec-

tive of septal damage, demonstrating that RV dilatation in

sham animals is offset by LV collapse during high assist

levels. As the first such study to demonstrate this, it extends

previous findings limited to RV assessment that have con-

fined observation to RV shape change, RV dilatation, and

septal shift.7,8,21 In support of studies suggesting septal po-

sition directly influences biventricular function, we have

demonstrated that RV geometric disruption directly leads

to altered RV function during high levels of LV unloading

in normal hearts.

Geometric analysis identified 75% or greater LV unload-

ing induces leftward septal shift, which appeared at a 75%
threshold where it also reached a maximum. This state was

maintained with 100% unloading, making it likely that the

36F cannula traversing the left atrium and mitral valve

limited further septal movement. Conversely, mechanical

devices using direct LV apical cannulation, such as the axial

flow devices, may add a component of base-to-apical ‘‘suc-

tion’’ and induce even greater degrees of LV collapse with
FIGURE 4. A, Chronic regional effects of PTSMA on interventricular septum and RV and LV free wall thickening. B, Effect of PTSMA on need for pacing.

RV, Right ventricle; LV, left ventricle; PTSMA, percutaneous transluminal septal myocardial ablation.
gery c July 2009
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FIGURE 5. Sham (A, B) and PTSMA (C, D) postmortem hearts before removal of septal sonomicrometer crystals and after differential staining with 1%

triphenyltetrazolium solution and methylene blue dye. Extensive fibrosis (white) is seen on the left (C) and right (D) septal surfaces after PTSMA, whereas

undamaged triphenyltetrazolium stained red areas (A, B) are seen in the sham.
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high assist levels. We have demonstrated that protection

from RV dilatation is provided by the presence of chronic

septal damage. This is the first study to identify clear differ-

ences in RV response to septal infarction compared with re-

versible ischemia. Despite previous investigation indicating

that septal ischemia to be a primary etiological factor leading

to RV failure during mechanical LV assistance,13 we found

that permanent septal injury in sheep hearts elicit an oppos-

ing effect. Coupled with preservation of RV geometry, it is

likely that protection is due to impaired septal compliance

resulting from PTSMA-induced fibrosis that limits move-

ment into the LV cavity. Neurohormonal activation in in-

farcted animals may further influence this interaction.

Load-Dependent Right Ventricular Response to Left
Ventricular Unloading

Increases in CVP, RV end-diastolic volume, and pulmo-

nary wedge pressure during high levels of LV unloading

have been assumed to result from increased venous return re-

lated to an increase from mechanically assisted CO.22 Our

results support these findings, evidenced by a decrease in

RV EF and an increase in CVP, by suggesting that between
The Journal of Thoracic and C
50% and 75% LV unloading, the redundancy of load-

dependent RV function is curtailed. The persistent decrease

in RV EF demonstrated at 75% or greater unloading also

agrees with other studies examining septal position.7,23

Verification of Septal Dysfunction
In keeping with previous clinical studies that have exam-

ined the effect of PTSMA,14,24 our findings show that

PTSMA results in a significant chronic localized infarct after

4 weeks. Our moderate dose of ethanol maximized chronic

damage while minimizing the potential complications,

such as complete heart block and retrograde left anterior

descending infarction. No animal in our series had such

complications during hemodynamic assessment, but interro-

gation at 4 weeks of standby pacemakers identified an in-

creased pacing need (Figure 4), indicative of temporary

His-Bundle dysfunction resulting from edema.

Study Limitations
RV and LV function were assessed in an experimental

model designed to address specific physiologic questions.

Heterogeneity of such clinical disease as heart failure was
ardiovascular Surgery c Volume 138, Number 1 177
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avoided to reduce the potential confounding effects. Further,

we have not applied the septal injury model to a failing heart

to mimic the clinical setting for use of LVADs. Such a study

forms the basis of further investigation.

CONCLUSIONS
RV dysfunction after LV unloading has been traditionally

attributed to enhanced venous return acting on occult RV pa-

thology,25 iatrogenic LV collapse, and RV dilatation with in-

terruption of left and right coupling mechanisms.7,8,12,21,23

We have identified the normal sheep heart as more suscepti-

ble to RV dysfunction during high levels of LV unloading

compared with that with chronic septal injury. This confirms

that the previous postulated etiological role of septal ische-

mia in RV dysfunction and intractable failure demonstrated

in a large animal model13 is not applicable to chronic septal

pathologies. Thus, clinically, patients with significant septal

fibrosis may be protected during LV cardiac assistance from

the greater risk of RV dysfunction that is an accompaniment

of ‘‘normal’’ or ischemic interventricular septa.

Compared with the results of previous studies of acute is-

chemic septal dysfunction, these studies demonstrate a dis-

tinctly different RV response during high levels of LV

unloading with chronic septal pathology. This warrants

more investigation into the clinical manifestation of refrac-

tory RV failure during LV unloading, especially in patients

who demonstrate evidence of chronic dysfunction and re-

quire mechanical CO augmentation.
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