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Abstract
Arterial elasticity has gained importance in recent decades because it has been
shown to be an independent predictor of cardiovascular diseases. Several
in vivo and ex vivo techniques have been developed to characterize the elastic
properties of vessels. In vivo techniques tend to ignore the anisotropy of the
mechanical properties in the vessel wall, and therefore fail to characterize
elasticity in different directions. Ex vivo techniques have been focused on
studying the mechanical properties in different axes. In this paper, we present a
technique that uses piezoelectric elements to measure the elasticity of soft tubes
and excised arteries in two directions while maintaining the natural structure of
these vessels. This technique uses sonometry data from piezoelectric elements
to measure the strain in the longitudinal and circumferential directions while the
tubes/arteries are being pressurized. We conducted experiments on urethane
tubes to evaluate the technique and compared the experimental results with
mechanical testing done on the materials used for making the tubes. We then
performed sonometry experiments on excised pig carotid arteries assuming
that they are transversely isotropic materials. To evaluate the sensitivity of this
technique to changes in the material properties, we changed the temperature of
the saline bath in which the arteries were immersed. The calculated Young’s
modulus from sonometry experiments for the urethane tubes and the mechanical
testing values showed good agreement, deviating no more than 13.1%. The
elasticity values from the excised arteries and the behavior with the temperature
changed agreed with previous work done in similar arteries. Therefore, we
propose this technique for nondestructive testing of the biaxial properties of
soft material tubes and excised arteries in their natural physiological shape.

(Some figures in this article are in colour only in the electronic version)
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Introduction

Arterial elasticity has gained importance in recent decades as an independent predictor of
cardiovascular diseases and mortality (Dolan et al 2006). Ex vivo and in vivo testing of
vessels is important, first to understand the intrinsic mechanical properties of the tissues, and
second to relate such properties to the physiology of the system to which they belong. Several
in vivo approaches to study the properties of vessels have been developed such as pulse
wave velocity (Fulton and McSwiney 1930, Harada et al 2002), imaging techniques (Bank
et al 1999, Woodrum et al 2006) and augmentation index analysis (Obara et al 2009). Even
though these techniques have the potential to be applied in a clinical setting, the complexity
of the measurements and analysis has not allowed them to become widely used. Another
disadvantage to in vivo testing is that it tends to ignore that arteries consist of anisotropic
materials; therefore, the mechanical properties are not fully characterized.

Ex vivo testing techniques have been applied to understanding the differences in
mechanical properties in the circumferential and longitudinal directions. Fung et al proposed
a biaxial technique in which the arteries are cut open and treated as thin films. Then, the
tissue samples were placed on a machine that stretched them in two directions while recording
the stresses and strains (Debes and Fung 1995, Sacks and Sun 2003). Other attempts to
characterize arteries used an inflation method where they pressurized a thin film of vessel
wall to create a bubble while optically tracking the shape in the directions corresponding to
the axial and in longitudinal axes (Marra et al 2006, Wright et al 2004). Kassab’s group
developed a testing technique that measured the circumferential, longitudinal and torsional
properties independently from each other by pressurizing the vessels while keeping them at a
fixed length, and later stretching them in the axial direction at a set pressure (Lu et al 2003).

In this paper, we propose the use of piezoelectric elements and sonometry to track
the strain in the longitudinal and circumferential directions when pressurizing soft tubes
and arteries. This is a nondestructive testing technique as there is no need to modify the
geometrical shape of the cylindrical structures and no need to exceed the elastic limit of the
materials (no plastic deformations). In addition, the artery is stressed while maintaining its
natural shape, giving material properties relevant to its in situ state. In this paper, we first
present the constitutive equations that govern the longitudinal and circumferential stress–
strain relationships for isotropic and transversely isotropic materials. Next, we describe
the experiments using sonometry on soft urethane tubes and excised pig carotid arteries in
addition to mechanical testing done on urethane samples to validate the sonometry technique.
We believe that this technique can be widely used to study the biaxial mechanical properties
of arteries in their natural shape. This will allow better characterization and understanding of
the elasticity of arteries in the different disease processes.

Methods

Theory

The mechanical response of arteries is characterized by nonlinear material response as well
as intrinsic anisotropy due to its composite-layered microstructure (Dobrin and Canfield
1984). We will be concerned in this work with the development of a simple and adequate
theory that would allow us to approximately capture the anisotropic and nonlinear response of
arterial vessels. Although the anisotropy of arteries is quite complex, originating from helical
patterns of collagen and elastin fibers wound around its axis arranged in different layers,
we are primarily interested in capturing the apparent differences in elastic moduli in the
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Figure 1. Axes for an isotropic tube or a transversely isotropic artery.

circumferential and longitudinal directions. The main reason for this is that circumferential
compliance plays a fundamental role in the physiology of arteries. Therefore, we start by
assuming that the response observed in our experiments can be captured by a transversely
isotropic material model. Moreover, we will characterize the nonlinear response by using a
small-strain nonlinear elastic (secant-moduli) formulation in which Young’s moduli in different
directions will be taken as a function of the state of stress. Furthermore, we will ignore shear
stresses and shear deformations, as we will be concentrating on the response of arteries to
internal pressure alone.

To this end, considering the material axes in a cylindrical body as shown in figure 1, where
1 is the longitudinal direction, 2 the circumferential and 3 the thickness direction, we can start
with the strain–stress relationship for an orthotropic material as
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where σ 1, σ 2 and σ 3 are the stresses in the longitudinal (axial stress), circumferential (hoop
stress) and thickness directions, respectively, and ε1, ε2 and ε3 are the strains in the respective
directions, ν ij and ν ji for i and j equal to 1, 2 and 3 are Poisson’s ratios between the three
orthogonal directions and E1, E2 and E3 the respective Young’s moduli.

Consider a transversely isotropic material in which E1 = E3. For instance, this can
represent a cylinder with fibers wound around its circumference or a first approximation for
an artery, where there are different fibers oriented longitudinally and circumferentially. From
the symmetry of the constitutive matrix, we have in general

νij

Ej

= νji

Ei

, i, j = 1, 2, 3. (2)

Using the transverse isotropy condition, i.e. E1 = E3, the following relationships hold:
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.

(3)



3374 M Bernal et al

Now, let us determine what constraints the incompressibility condition imposes on the material
constants. Incompressibility requires that ε1 + ε2 + ε3 = 0 for all states of stress. So, we can
operate on our constitutive equations as
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For this condition to hold for all states of stress, we must have

⎧⎨
⎩

1
1
1

⎫⎬
⎭

T

⎡
⎢⎢⎢⎢⎢⎣

1

E1
−ν12

E2
−ν13

E1

−ν21

E1

1

E2
−ν23

E1

−ν31

E1
−ν32

E2

1

E1

⎤
⎥⎥⎥⎥⎥⎦

=
⎧⎨
⎩

0
0
0

⎫⎬
⎭

T

. (5)

The above expression simply states that the sum of the elements in each column must add up
to zero. Expanding the above expression yields three simultaneous equations given as

1 − ν21 − ν31 = 0

1 − ν12 − ν32 = 0 (6)

1 − ν23 − ν13 = 0.

From the transverse isotropy condition, we set ν12 = ν32. Substituting this expression into the
second equation above, yields

ν12 = ν32 = 1
2 . (7)

Also, note that from the transverse isotropy condition we stated that ν12
E2

= ν21
E1

. Therefore,
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2
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And finally, from the first equation resulting from the incompressibility condition and using
the above result, we have

1 − ν21 − ν31 = 0 (9)
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2
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. (10)

Considering the type of loading in our experiments, the walls of a thin cylinder under internal
pressure can be considered under a state of plane stress. For our material coordinate system,
this implies σ3 = 0. Hence, the constitutive equations reduce to
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Consider the specific case for a thin tube where σ2 = 2σ1. Then,
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Therefore, the secant elastic moduli in the circumferential and longitudinal directions solved
from equations (12) and (13), respectively, are

E2 = 3

4

σ2

ε2
(14)

and

E1 = σ2

2ε1 + 4
3ε2

. (15)

For the special case of an incompressible and isotropic material (Reddy 2008), E1 = E2 =
E3 = E and νij = νji, i, j = 1, 2, 3 are equal to 0.5. Replacing these conditions in (1) we
obtain the following equivalent expressions:
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For the isotropic and transversely isotropic cases, the stresses and strains in the circumferential
directions were calculated using the expressions for a thin-walled cylinder, because the ratio
of the thickness to the radius was around 0.2, and are described as follows:

σ1 = Pr

2h
, (18)

σ2 = Pr

h
, (19)

r = rout − h
/
2, (20)

ε11 = r − r0

r0
, (21)

ε22 = l − l0

l0
, (22)

where P is the transmural pressure, rout and l are the radius and length at each pressure value
measure with the piezoelectric elements, respectively, r is mean radius, h is the thickness and
r0 and l0 the initial values for the radius and the length, respectively.

For both conditions, isotropic and transversely isotropic, the state of incompressibility
was defined as ε1 + ε2 + ε3 = 0.
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Experiments

Urethane tubes and arteries

As a model for the experiments, we developed a custom-made injection process to create our
own tubes out of urethane. The urethane used (Reoflex 20, Smooth-On Inc., Easton, PA)
comes in two different components (A and B), which are mixed in equal amounts. To soften
the urethane mixture there is a third component that can be added (So-Flex, Smooth-On Inc.,
Easton, PA). The percentages were determined by the weight of the components used. Three
tubes were made; two of them had no So-Flex, which we defined as 0% (0% of So-Flex was
added to the mixture of A or B). We refer to these tubes in this paper as 0% #1 and 0% #2.
We also made a tube with 15% So-Flex. A glass tube with an internal diameter of 4.98 mm
was set vertically in a clamp attached to a ring stand. The liquid urethane mixture was then
injected from the bottom in order to avoid bubbles in the mixture. Once the tube was filled
with the urethane, a stainless steel rod of 3.2 mm diameter was introduced from the top and
centered from one end of the tube to the other. The centering process was guaranteed by two
custom machined nozzles that were in each extreme end of the glass tube. Both the inside of
the glass tube and the stainless steel rod were sprayed with a demolding agent (Smooth-On,
Easton, PA). The urethane was allowed to cure for at least 24 h before taking the rod and the
urethane tube out of the glass mold.

Two pairs of carotid arteries (left and right) were excised from healthy female pigs (pig
1: 33.8 kg, pig 2: 47 kg) after the animals were euthanized according the Institutional
Animal Care Use Committee guidelines from our institution. The specimens were kept in the
refrigerator (4 ◦C) overnight in saline solution and tested the next day.

Sonometry experiments

The tubes and the arteries were mounted on a holding frame and cannulized on the upper end
while sealed with a suture at the bottom. Before starting the experiments, we made sure that the
tube/artery was filled with water/saline and that there were no bubbles inside the structures.
The sonometry experiments were performed using a Sonometrics system (Sonometrics Corp.,
London, ON, Canada) with 1 mm diameter piezoelectric elements. The displacements in
the circumferential and the longitudinal directions were measured using three piezoelectric
elements during pressurization of the tubes/arteries. Two of the elements were set as receivers,
and one as a transmitter. The transmitter was placed on one side of the structure, while the
element used to measure the diameter changes was placed at the same level on opposite side
of the tube/artery. To track the longitudinal motion, the third element was placed on the same
side as the transmitter at a distance of 15 mm for the urethane tubes and 20 mm for the arteries.
The experimental setup is described in figure 2. The location for the all the piezoelectric
elements was marked prior to the attachment using a ruler, to make sure that the elements
location was appropriate. The speed of sound used to calculate the distances from the time
of flight was 1480 m s−1, since the tubes were filled with water and the arteries with saline
solution. The experiments on the urethane tubes were all performed at room temperature,
around 22 ◦C.

The piezoelectric elements were attached to each of the urethane tubes using silicone
glue (732 Multi-Purpose Sealant, Dow Corning Corp., Midland, MI). The attachment to the
arteries required putting a point of superglue (size of a pin head) on the marked spots, and
then using medical adhesive (Hollister Inc. Libertyville, IL, USA). The piezoelectric elements
were attached to the superglue. After placing the elements we let the glue cure for 5–10 min.
The tube/artery with the elements was then immersed in a water or saline bath. The sensitivity
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Figure 2. Schematic of the experimental setup. The tubes or arteries were pressurized using
and infusion pump that increased the level in a column of water/saline, increasing the transmural
pressure. The pressure was measured using a pressure transducer at the level of the water/saline
bath. The piezoelectric elements were attached to the walls of the tube/artery. The data from the
crystals were digitized using a computer. The tube/artery was sealed on the bottom end with a
suture.

of each element was maximized using the interface available with the computer before each
set of experiments. The pressurization of the structures was performed using an infusion
pump (KDS210, KD Scientific, Holliston, MA) set to deliver water/saline at a specific rate to
a column of water, changing the transmural pressure from 10 to around 80 mmHg and then
back down to 10 mmHg (figure 2). Before recording data, four to five complete pressurization
and depressurization cycles (from 10 to 80 mmHg and back to 10 mmHg) were performed
for preconditioning of the tube/artery. This was repeated every time the piezoelectric
elements were attached. The data were acquired with the Sonometrics interface and software
and a PC; the sampling rate was set to 483.7 Hz, the length of the transmitting pulse to
406.3 ns and an inhibit delay equivalent to 3 mm (as the elements were at all times farther than
this). The pressure inside the structure was recorded using a pressure sensor (PX319-015G5V,
Omegadyne Inc., Sunbury, OH) set at the level of the crystals. The signal was digitized
using an analog input of the Sonometric system. Before the experiments, the pressure sensor
was calibrated using a column of water which was set at three different levels (10, 50 and
100 mmHg) to establish the calibration curve for the sensor.
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(A)

(B)

(C)

Figure 3. Diameter and length response to a pressurization loop for the 0% #1 urethane tube.
Panel A shows the pressure profile going into the tube. Panel B shows the response of the diameter
to the pressure. Panel C shows the response of the length to the pressure. The solid lines in panels
B and C are the linear regression of the pressurization data.

During the analysis of the piezoelectric element data for the tubes, the change in radius and
length was linear (figure 3); therefore, a linear regression on the data was done to extrapolate
the values of r and l to a 0 mmHg pressure and to decrease the noise. To assess the goodness
of the fit the R2 values of the regressions were calculated. The data from the fitting were
used in equations (18), (19), (21) and (22) described in the Methods section to calculate
the stress and strain and Young’s modulus using equation (16). Due to the nonlinearity of
the artery stress–strain data, the same linear regression procedure was not possible in the
arteries.

To study the properties of healthy pig carotid arteries, the left and the right carotids of
pig 1 were tested at room temperature and a pressurization rate of 50 ml min−1 (pressurization
and depressurization loop around 80 s). After the piezoelectric elements were attached and
the vessel was immersed in the saline, four to five cycles of preconditioning were performed
before acquiring data. This preconditioning procedure was done for all the experiments, every
time the elements were attached or the artery was taken out of the saline bath.

To evaluate the effect of pressurization rate on the mechanical properties of the excised
arteries we used the pump at three different rates. The slower rate infused water at
26.6 ml min−1 (130 s pressurization and depressurization loop). The medium rate was
40 ml min−1 (around 90 s), and the fast rate was 56 ml min−1 (the fastest the pump could
infuse) took 70 s. For these experiments the left carotid artery of pig 2 was used.

To evaluate the ability of this technique to measure the changes in the mechanical
properties of arteries, we varied the temperature of the saline bath in which the arteries
were submersed during the experiments. Three temperatures were used, 6 ◦C, 22 ◦C (room
temperature) and 40 ◦C. The right carotid artery from pig 2 was immersed in each of the baths
and left for 5 min for the artery to acclimate. Then we proceeded to do the conditioning
pressurizing cycles before acquiring the data.
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(A) (B)

(C)

Figure 4. Diameter and length response to a pressurization loop for the right carotid of pig 1. Panel
A shows the pressure profile going into the artery. Panel B shows the response of the diameter to
the pressure. Panel C shows the response of the length to the pressure.

Mechanical testing in tubes

In order to compare and validate the results of the sonometric experiments, we performed
controlled compression tests on urethane samples using a DMA machine (Q800, TA
Instruments, New Castle, DE). These tests were done on samples of about 5 × 5 × 5 mm
from the same urethane composition mixture as the tubes used for the sonometry experiments.
The controlled force test was done to determine Young’s modulus in a linearly elastic portion
of the material. In this test, the loading rate was 1 N min−1 to a maximum of 0.75 N, which
translates to about 5% strain. The same test was repeated in five different samples from the
same batch to measure the reproducibility of the compression test.

Results

The changes in the diameter and length of the urethane tubes were observed to be linear as
expected, since these tubes are isotropic, linearly elastic materials. Figure 3 shows changes in
diameter and length for pressure loop for the 0% #1 urethane tube. Panel A shows the linear
pressure profile generated by the infusion pump; panel B shows the changes in the diameter
with its linear regression. Similarly, panel C shows the change in the length to the pressure
loop with linear regression (solid black line). The R2 values for the 0% #1, 0% #2 and 15%
tubes were 0.9876, 0.986 and 0.9866 for the diameter and 0.6728, 0.8453 and 0.9030 for the
length.

Similarly, figure 4 shows the response of the diameter and the length of an excised pig
carotid artery (right) to pressure. Panel A shows the pressure profile, panel B the change in
diameter and panel C the change in the length. Note how in this case, the changes in the
diameter are not linear, while the changes in the length conserve a linear behavior.

The stress–strain relationships for the tubes and the arteries were calculated using
equations (18)–(22). The values of r were taken from the piezoelectric elements, and calculated
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(A) (B)

(C) (D)

Figure 5. Strain–stress relationships for tube (0% #1) and artery (right carotid artery pig 1).
Panel A shows the strain–stress relationship for the urethane tube in the circumferential direction
and panel B, in the longitudinal direction. In the tube since there was no hysteresis, only the
calculated values for the stresses and strains from the linear regression during pressurization are
shown. Panels C and D show the relationships between strain and stresses for the excised right pig
1 carotid artery in the circumferential and longitudinal directions, respectively.

as r = rout −h
/
2. The initial h = 0.89 mm for the tubes and 0.5 mm for the arteries (measured

using a caliper after testing). The changes in r and h due to pressure were calculated assuming
a constant cross section and using the values for rout from the piezoelectric elements.

Figure 5 shows the stress–strain relationships in the circumferential and longitudinal
directions for the 0% #1 tubes and right carotid artery. Panels A and B show the circumferential
and longitudinal stress–strain relationships for the tube, respectively. Note that in this case we
show only the pressurization part of the loop since the data are from the linear regression and
there was no hysteresis. Panels C and (D) show the stress–strain in the circumferential and
longitudinal directions for the carotid artery, respectively.

From the stress and strain values from equations (18)–(22), we calculated the values of
secant elastic modulus for the tube using (16) and (17). In this case since the tube is a linear
elastic material the secant modulus and Young’s modulus are the same. For the arteries,
the secant moduli, E2 and E1, were calculated using the transversely isotropic constitutive
equations (14) and (15). In figure 6, panel A shows the results for the 0% #1 and 15% tube
using (16), while panel B shows the results using (17). Note that since this is an isotropic
material the results from (16) and (17) should agree. In this case the discrepancy can be
explained by the low strain registered in the length for all the urethane tubes, which biased the
results using (17) since this equation gives more importance to the strain in the longitudinal
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(A) (B)

(C) (D)

Figure 6. Calculated Young’s moluli for the tubes (0% #1 and 15%) and the right and left carotid
artery from pig 1. Panels A and B show the calculated values for E from (16) and (17) for the two
tubes (—•— for the 0% #1 and – – – for the 15% tube). Panels C shows the E2 for the (—•—)
right and (– – –) left excised carotid arteries from pig 1. Panel D shows the E1 for the two same
two arteries, the legend from (C) applies to (D).

direction than in the circumferential. Panels C and D show E2 and E1 for the right and left
artery for pig 1.

Figure 7 shows the comparison between the results of Young’s modulus (E) using the
sonometry technique and the mechanical test. The first bar shows the result of the compression
test in the 0% urethane sample. Bars 2 and 3 are the results of the sonometry experiments
on the 0% #1 and 0% #2 tubes. The fourth bar is the result of the mechanical testing on the
15% urethane sample, and the fifth bar is the result of the sonometry experiment on the 15%
urethane tube. The error bars in the mechanical testing are the standard deviation of five tests
on five different samples of the same material. The error bars on the sonometry experiments
are the standard deviation of three consecutive pressurization loops on each of the tubes.

The results of the different pressurization rates on an excised pig carotid artery are shown
in figure 8. Panel A shows the three different linear pressurization profiles: slow, medium and
fast. Panels B and C show the calculated secant Young’s modulus in the circumferential and
longitudinal directions, respectively, for each of the pump rates.

The response of the carotid artery to the different temperatures was as expected. The
artery stiffened in cold saline while becoming more compliant in the warn saline. Figure 9
shows the results for the stress–strain relationships and the secant elastic moduli (E1 and E2) as
a function of temperature. Panels A and B show the stresses and strain in the circumferential
and longitudinal direction, respectively. Panels C and D show the corresponding secant moduli
calculated using (14) and (15).
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Figure 7. Comparison between the sonometry results in urethane tubes and mechanical testing.
First column is Young’s modulus for the 0% soflex urethane samples. Columns 2 and 3 show the
results for tubes 0% #1 and 0% #2, respectively, with sonometry. Column 4 shows the mechanical
testing results on the 15% soflex urethane samples. Column 5 is the sonometry results on the 15%
tube. The error bars for the mechanical testing represent the standard deviation of the results from
five different samples of the same material. The error bars for the sonometry results represent the
standard deviation of the results from three consecutive pressurization loops.

(A) (B)

(C)

Figure 8. Response of right carotid artery from pig 2 to different pressurization rates. Panel
A shows three different pressurization rates, slow (—•—) (26.6 ml min−1), medium (– – –)
(40 ml min−1) and fast (——-) (56 ml min−1). Panel B shows the results for the circumferential
elastic modulus as a function of pressure for the three pressurization rates. Panel C shows the
calculated longitudinal moduli for the different pressurization rates. The legend in panel A applies
to panels B and C.

Discussion

The differences in the response of the diameter and the length for the tubes and the arteries
are attributed to the difference in the nature of the materials. The tubes are isotropic and
linearly elastic in the region of strain that we explored. The behavior of the artery showed
a nonlinear behavior in the circumferential direction and almost a linear behavior in the
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(A) (B)

(C) (D)

Figure 9. Temperature effect on strain–stress relationships and elastic moduli calculation in the
circumferential and longitudinal directions. Panels A and B show the strain–stress relationships
in the circumferential and longitudinal directions, respectively, to three saline bath temperatures
(6 ◦C (—•—), 22 ◦C (– – –) and 40 ◦C (——)). Panels C and D show E2 and E1, respectively, for
the three different temperatures. Legend from panel B applies to panels A, C and D.

longitudinal direction. In both cases, tubes and arteries, in panels B and C of figures 3 and 4, it
is appreciable that the deformation in both directions was completely reversible, meaning that
this testing technique, at this strain and stresses levels, does not cause plastic deformations.

Note in figure 3, panel C, the low strain recorded in the longitudinal direction. This is
due to the resolution of the system (minimum 11 μm) and the nature of the urethane, which
strained in the circumferential direction but it strained very little in the longitudinal one. This
low strain affects the calculation of the elastic modulus (E) especially when using (17), since
this equation gives more importance to the strain in the longitudinal axis and diminishes the
contribution from the circumferential direction. This explains why, as shown in figure 6,
panels A and B, the two values for the elastic modulus from equations (16) and (17) deviate
from one another in both tubes.

The strain–stress relationships showed in figure 4 demonstrate the same linear and
nonlinear behavior between the tubes and the arteries discussed before. It is important to
note in this figure the difference in hysteresis in the strain–stress relationship in the artery for
the circumferential (panel C) and longitudinal directions (panel D). The hysteresis suggests a
viscoelastic behavior, characteristic of soft tissues. Since the arterial tissue is an orthotropic
material, it is possible that the longitudinal and circumferential directions have different
hysteresis in the two directions measured. This might be due to the strain levels that were
used our experiments, or it could be the nature of the arterial wall and the distribution of its
multiple components (elastin, collagen and smooth muscle).
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Figure 6 shows Young’s modulus for the circumferential (panel C) and longitudinal
(panel D) directions for two normal, healthy pig carotid arteries. It is important to clarify
that the harvesting and storing of the arteries in saline solution overnight before performing
the experiments, excluded any participation of the vasoactive components of the arterial wall
(smooth muscle) materials. In this study we wanted to show the application of this technique
by measuring the passive mechanical properties of the arterial wall. To study the contribution
of the smooth muscle to the mechanical properties, the experiments could be performed
in oxygenated Krebs solutions (Tremblay et al 2010). By using vasoactive drugs such as
epinephrine and nitroprusside the smooth muscle tone could be altered and the effect on the
stiffness of the arterial wall evaluated. In figure 6, it is possible to see the effect of pressure on
the elastic modulus of the passive elements of the arterial wall (elastin and collagen), and how it
increases with pressure in a linear fashion. The pressure had more effect on the circumferential
than on the longitudinal direction, and this, as we mentioned before, could be due to the levels
of strain achieved in our experiments. The values for the elastic modulus observed in our
experiments are in the same range as the ones presented in the work by O’Rourke et al in their
systematic review of the clinical applications of the arterial elasticity and the reference values
in different vascular beds (O’Rourke et al 2002). In the same figure, as mentioned before,
panels A and B show the results of the calculation of E, from (16) and (17), respectively. The
discrepancy is attributed to the low strain in the longitudinal direction. Therefore the values
for E presented in figure 7 were obtained from equation (16) which gives prevalence to the
strain and the stress in the circumferential direction for the calculation of Young’s modulus. In
this figure, we showed good agreement in the values of E between the sonometry techniques
and mechanical testing of urethane samples with percent errors of 6.8% and 13.1% for the 0%
#1 and 0% #2 tubes, respectively, and a percent error of −8.2% for the 15% So-Flex tube.

For the pressurization rates explored in this study, we observed no effect on the mechanical
properties of the excised arteries (figure 8) or the tubes (data not shown). This could be due
to the rates that we used in our experiments, which were determined partially by the limits of
the pump. The fastest the pump could infuse saline on the column was at 56 ml min−1, which
translated into a 70 s pressurization loop. The results may differ if the rates could be pushed
to 30 s or less, where the viscoelastic properties of the arteries could have a bigger impact on
the response of the wall to the changing pressure.

The response of the arterial wall mechanics to temperature changes was expected.
Previous work has shown similar results, where the arteries become stiffer in cold solutions
and more compliant in warm ones (Atienza et al 2007, Guinea et al 2005, Tsatsaris 2005). In
our case, figure 9 showed the changes in the strain–stress relationships, where a progression
is observed from the cold saline solution (6 ◦C) to the warm one (40 ◦C). This effect was
more evident in the circumferential direction, while for the longitudinal modulus, the lines for
the different temperatures seem to deviate from one another at our maximum strain values.
Another interesting observation is the variation of hysteresis in the circumferential direction
as a function of temperature (figure 9, panel A). The maximum hysteresis was observed at
the coldest saline solution, while the least amount of hysteresis was at room temperature.
This would suggest that temperature plays a significant role in the viscoelastic behavior of the
arterial wall mechanics.

Some of the disadvantages of our technique included the minimum resolution of 11
μm mentioned before, which could be a problem when testing materials that strain different
amounts in the two directions, like in our case, or when testing stiffer materials with high E,
that strain very little. A possible solution to this problem could be to space the piezoelectric
elements more in the longitudinal direction; this way the amount of strain measure would
increase. In our experiments, the maximum pressure of 80 or 90 mmHg was determined by
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the height of the column of water/saline, which could not go any higher due to space limitation.
Exploring a wider range of pressures (up to 150 mmHg) could have given more information of
the behavior in the longitudinal direction, and possibly explore the nonlinear properties in this
direction. Another disadvantage in our experiments was the maximum infusion rate that the
pump could achieve. This potentially limited our experiments in studying the dependence of
the mechanical properties due to the stressing rate. Finally, it is important to mention that the
change of saline baths for the temperature dependence experiment, caused some interruption
of the signal from the piezoelectric elements at some pressure levels, as could be seen in
figure 9.

Nevertheless, we have demonstrated that application of piezoelectric elements presented
in this work can be of potential use in the study and characterization of the biaxial mechanical
properties of arterial walls in their natural shape. The use of oxygenated Krebs or Ringer’s
solutions instead of a saline bath could potentially allow the study of the vasoactive components
of the arterial wall. Finally, even though this would be an invasive technique, it could be used for
in vivo animal models and could give valuable information of the role of biaxial biomechanics
of arterial wall in different physiological and diseases processes.

Conclusion

In this work we presented a novel application of piezoelectric elements and sonometry to study
the in situ properties of arteries and soft tubes in two different directions (circumferential and
longitudinal). We presented the equations for isotropic and transversely isotropic materials,
and validated the technique in urethane tubes against mechanical testing. Finally we showed
the application of the technique in arteries and compared the results to values in the literature
and we found good agreement. Therefore we propose this approach for the study of the
biaxial mechanical properties in arteries, in a nondestructive way, while conserving the natural
geometry of the structure being tested.
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