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Ultrasound speckle tracking for carotid strain assessment has in the past decade gained interest in studies
of arterial stiffness and cardiovascular diseases. The aim of this study was to validate and directly contrast
carotid strain assessment by speckle tracking applied on clinical and high-frequency ultrasound images
in vitro. Four polyvinyl alcohol phantoms mimicking the carotid artery were constructed with different
mechanical properties and connected to a pump generating carotid flow profiles. Gray-scale ultrasound
long- and short-axis images of the phantoms were obtained using a standard clinical ultrasound system,
Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency ultrasound system, Vevo 2100 (FUJIFILM,
VisualSonics, Toronto, Canada) with linear-array transducers (12L / MS250). Radial, longitudinal and cir-
cumferential strains were estimated using an in-house speckle tracking algorithm and compared with
reference strain acquired by sonomicrometry. Overall, the estimated strain corresponded well with the
reference strain. The correlation between estimated peak strain in clinical ultrasound images and refer-
ence strain was 0.91 (p < 0.001) for radial strain, 0.73 (p < 0.001) for longitudinal strain and 0.90
(p < 0.001) for circumferential strain and for high-frequency ultrasound images 0.95 (p < 0.001) for radial
strain, 0.93 (p < 0.001) for longitudinal strain and 0.90 (p < 0.001) for circumferential strain. A significant
larger bias and root mean square error was found for circumferential strain estimation on clinical ultra-
sound images compared to high frequency ultrasound images, but no significant difference in bias and
root mean square error was found for radial and longitudinal strain when comparing estimation on
clinical and high-frequency ultrasound images. The agreement between sonomicrometry and speckle
tracking demonstrates that carotid strain assessment by ultrasound speckle tracking is feasible.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Methods for early detection and risk stratification in cardiovas-
cular diseases are of major importance for the prevention of acute
ischemic events such as stroke and myocardial infarction. Arterial
stiffness describes the rigidity of the arterial wall. An increase in
arterial stiffness is one of the most important risk factors of cardio-
vascular mortality [1]. Since changes in arterial stiffness are
thought to occur before clinically apparent cardiovascular disease,
methods for arterial stiffness assessment are essential in order to
detect, predict and prevent cardiovascular diseases. Moreover, risk
stratification is needed in patients with an already established
atherosclerotic disease, to provide appropriate interventional
treatment strategies and prevent plaque rupture, which is a com-
mon cause of acute ischemic events [2].

Ultrasound-based methods are commonly used to assess
mechanical properties of arterial walls in studies of arterial stiff-
ness and atherosclerosis. As such, intima-media thickening is con-
sidered as a marker of atherosclerosis [3], whereas pulse wave
velocity [1,4], arterial distensibility [5,6] and b-stiffness index [7]
are common measures of arterial stiffness that have been associ-
ated with cardiovascular risk. Recently, novel methods based on
shear wave propagation have been developed to assess elastic
properties of the artery [8]. Still, there is need for a standardized
method assessing arterial stiffness in a reproducible manner.

Historically, ultrasound imaging has been used to confirm pla-
que presence and estimate the extent of the flow limiting stenosis
[9], although more recent studies have shown that plaque rupture
carotid
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and thrombosis, rather than the stenosis, precipitate most acute
ischemic events [2]. Typically, vulnerable plaques at high risk of
rupture and thrombosis are characterized by active inflammation,
large lipid core, thin fibrous cap, intraplaque hemorrhage, and neo-
vascularization of the vasa vasorum [2,10–12]. Accordingly, assess-
ment of properties correlated with plaque composition is needed
for plaque characterization and risk stratification. Today, common
ultrasound-based methods for this purpose in clinical practice are
mainly limited to visual assessment and evaluation of plaque mor-
phology and echolucency [13,14].

Ultrasound speckle tracking is a technique that allows for
assessment of tissue motion and deformation by tracking interfer-
ence patterns across imaging frames. The technique has to a large
extent been developed and applied for assessment of mechanical
properties of the myocardium [15], whereas speckle tracking-
based arterial strain assessment has gained interest in recent years
[16–18]. Speckle tracking and tissue Doppler imaging techniques
have shown potential in both subclinical detection of increased
arterial stiffness, as lower arterial strain values were associated
with increased cardiovascular risk [19,20], and in the assessment
of plaque characteristics to predict plaque rupture, as strain corre-
lated with plaque composition [21,22].

Assessing strain in the arterial wall and in atherosclerotic pla-
ques is particularly challenging because of the small structures
involved and their low physiologic deformation in relation to the
applied ultrasound wavelength used in clinical ultrasound sys-
tems. A variety of methods enabling measurements of radial and
circumferential arterial strain have been developed and applied
both in phantom setups and in vivo [5,17,18,20,23–25]. During
the last decade, methods to assess motion and strain in the longi-
tudinal axis of the arterial wall have also been presented [26–29].
The longitudinal motion of the artery has been neglected and is dif-
ficult to assess due to the low amplitudes combined with the
intrinsic lower spatial resolution in the azimuth direction. How-
ever, with improved imaging techniques it has been demonstrated
that the longitudinal motion of the arterial wall during systole can
be measured using ultrasound speckle tracking [26,30].

We recently developed a speckle tracking algorithm with
parameters tuned for the vascular setting to be used in the charac-
terization of arterial wall mechanics by estimating the in-plane
wall strain tensor [27]. The feasibility of the algorithm to assess
radial and longitudinal strain of the carotid artery using standard
clinical equipment based on simulated data sets was already
shown [27]. Moreover, preliminary results from strain assessment
in vitro using clinical ultrasound in a set of three phantoms have
been demonstrated [31]. Despite promising results when using
standard clinical ultrasound, the in vivo setting most likely requires
a higher spatial resolution and improved tracking quality com-
pared to the in silico setting, in particular for motion estimation
in the lateral dimension with an intrinsically lower spatial resolu-
tion than the axial dimension.

The development of high-frequency ultrasound systems has
allowed non-invasive micro-imaging for small animal research
purposes. High-frequency ultrasonography increases the spatial
resolution of images dramatically and it has been applied in e.g.
strain measurements in the murine aorta [32]. The use of high-fre-
quency ultrasound in humans is limited due to the low penetration
depth. However, the technique has been applied in human vascular
research for imaging of vessels for thickness measurements of the
three layers of the carotid artery, which has been suggested as a
more reliable measure of cardiovascular risk rather than intima-
media thickness [33].

Although different speckle tracking algorithms have shown
promising results in arterial strain imaging in silico and in vitro,
a thorough experimental validation of the full strain tensor of
the carotid artery wall via an independent method is lacking.
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Moreover, high-frequency ultrasound may improve arterial
speckle tracking performance because of the higher-quality
images with increased spatial resolution. Consequently, the aim
of the present study was to validate and directly contrast radial,
longitudinal and circumferential strain assessment by speckle
tracking applied on standard clinical and high-frequency ultra-
sound gray-scale images of gel phantoms mimicking the carotid
artery.
2. Methods

A dynamic setup consisting of a carotid artery gel phantom con-
nected to a programmable pulsatile flow pump was built to validate
the speckle tracking algorithm experimentally via sonomicrometry.

2.1. Phantom fabrication

Four in vitro phantoms mimicking the carotid artery were con-
structed using a water solution of 13% (mass%) polyvinyl alcohol
(PVA) (Sigma–Aldrich, St. Louis, MO, US) and 1% (mass%) graphite
powder with particle size < 50 lm (Merck KGaA, Darmstadt,
Germany) similar to a previously described procedure [31]. The
solution was heated with temperatures kept below 100 �C and
stirred until it was fully dissolved. Thereafter, it was poured into an
acrylic mold with a drilled cylindrical hole (diameter of 12 mm)
in the middle of the mold representing the outer diameter of the
vessel. The lumen was created by inserting a uniform metallic
rod with a diameter of 6 mm in the middle of the 12 mm hole,
which resulted in a phantom wall thickness of 3 mm. At each
end of the phantom, fixing collars with an outer diameter of
28 mm were formed. Moreover, the mold was cut longitudinally
in the center and axially at a distance of 20 mm from one of the
extremities, to allow for extraction of the phantom from the mold.
The parts were then kept together by screws while manufacturing
the phantoms. Fig. 1a and b illustrate the geometry of the phantom
and show a photo of one of the phantoms used in the study.

The mold containing the PVA/graphite solution was first stored
in a freezer for 12 h (� �20 �C) and then thawed in room temper-
ature (� 20 �C) for 12 h, which completed one freeze–thaw cycle.
The number of applied freeze–thaw cycles determined the elastic-
ity of the phantom, i.e. a large number of cycles resulted in a low
elasticity and vice versa. The four phantoms were constructed
using 2, 3, 3 and 4 freeze–thaw cycles, respectively, to obtain phan-
toms with different mechanical properties [34] and a range of
strain amplitudes for the validation.

At completion of all freeze–thaw cycles, the phantoms were
mounted in a polyvinyl chloride (PVC) box (110 mm � 85 mm �
300 mm) by squeezing the fixing collars between two plastic disks
as illustrated in Fig 1c. To avoid reflections from the PVC-box, the
bottom and the sides of the box were covered with a 3 mm thick rub-
ber layer. Further, a solution of 3% (mass%) Agar (Merck KGaA,
Darmstadt, Germany) and 4% graphite powder with particle
size < 50 lm (Merck KGaA, Darmstadt, Germany) was poured into
the PVC-box up to a level approximately 10 mm above the vessel
phantom to mimic surrounding tissue.

2.2. Experimental setup

The phantoms were connected to a pulsatile flow pump, Com-
puFlow 1000MR (Shelley Medical Imaging Technologies, Ontario,
Canada) by attaching hose assemblies with an inner diameter of
6 mm to the plastic disks in the PVC-box, see Fig. 1c [31]. A photo
of the experimental setup is shown in Fig. 2a. A pre-programmed
carotid flow profile (75 cycles/min) with peak flows at 14, 21, 28
and 35 ml/s was generated by the pulsatile pump as shown in
for radial, longitudinal and circumferential strain estimation of the carotid
gh-frequency ultrasound, Ultrasonics (2014), http://dx.doi.org/10.1016/
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Fig. 1. The vessel phantom. (a) Schematic illustration showing the geometry of the
vessel phantom and the positions of the sonomicrometry crystals (1–5). Crystals 2–
4 had a diameter of 0.7 mm and crystal 1 and 5 of 1 mm. (b) Photo of the vessel
phantom fabricated from a mixture of polyvinyl alcohol and graphite powder. (c)
Illustration of the vessel phantom attached to the polyvinyl chloride (PVC) box [31].

Fig. 2. (a) Experimental setup. Photo of the experimental setup using the Vivid 7
system for ultrasound imaging. (b) Flow profiles generated by the pulsatile pump at
four different peak flows (14, 21, 28, 35 ml/s).
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Fig. 2b. A solution of 40% glycerin (Acros Organics, Geel, Belgium)
and 60% water was used to mimic the blood. Before starting the
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experiments, the pre-programmed drain procedure was per-
formed to remove air bubbles from the blood mimicking fluid.

2.3. Data acquisition

Gray-scale ultrasound long- and short-axis images of the phan-
toms were obtained using a standard clinical ultrasound system,
Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency
ultrasound system, Vevo 2100 (FUJIFILM, VisualSonics, Toronto,
Canada) with linear-array transducers fixed at the top of the phan-
tom using a tripod holder. The scanning direction of the ultrasound
transducers with respect to the flow in the phantoms was the same
for every acquisition. The data from Vivid 7 will hereinafter be
referred to as the clinical ultrasound images and the data from
Vevo 2100 as the high-frequency ultrasound images. The imaging
characteristics for both systems are presented in Table 1. Images
were acquired throughout 3 pump cycles with the Vivid 7 system
and throughout 1 pump cycle with the Vevo 2100 system. For both
systems, the focus point was positioned in the far wall of the phan-
toms. Fig. 3 shows example gray-scale long- and short-axis images
from one of the phantoms recorded by the two ultrasound systems.

Reference strain values were assessed using a sonomicrometry
system at a sampling rate of 1063.8 Hz (Sonometrics, London,
Ontario, Canada). Sonomicrometry crystals were glued to the
phantom surface according to the illustration in Fig. 1a using cya-
noacrylate glue (Super glue, Loctite, Düsseldorf, Germany). The
crystals had a diameter of either 1 mm (crystal 1 and 5) or
0.7 mm (crystal 2, 3 and 4) depending on the inter-crystal displace-
ment to be measured. The crystals that acquired data for reference
circumferential strain (crystal 1 and 5) were glued on the outer
surface of the phantom wall, 180� apart in the short-axis view.
Crystal 2 and 3 were positioned close to crystal 1, approximately
7 mm apart longitudinally, to acquire data for longitudinal refer-
ence strain, whereas crystal 4 was glued on the inside of the phan-
tom wall opposite crystal 2 and 3 to acquire data for radial strain
calculation.

Sonomicrometry data and ultrasound images were acquired for
all phantoms and flow profiles in randomized order. In order to
avoid sound interference, the sonomicrometry system was
switched off during ultrasound image acquisition and vice versa.
Moreover, ultrasound imaging was performed parallel to the
planes containing the sonomicrometry crystals to avoid crystal
influence in the ultrasound images.

2.4. Data analysis

The collected data were analyzed offline using in-house devel-
oped Matlab (R2010a, MathWorks, Natick, MA, US) software [27]
[31], in which the speckle tracking analysis was performed on
the ultrasound images. Moreover, the inter-crystal distances were
processed to assess reference strain values from the sonomicrom-
etry data. The data were synchronized using a simulated ECG
signal from the pump.

2.4.1. Speckle tracking analysis
Before applying the in-house speckle tracking algorithm, the

Vevo 2100 data were downsampled with a factor of two, from 75
frames per second (fps) to 37.5 fps (i.e. every second image was
selected) to resemble the frame rate of the data from the Vivid 7
system. Speckle tracking analysis was performed on the envelope
detected data from the Vivid 7 system and on the radio-frequency
(RF) data from the Vevo 2100 system using the previously devel-
oped algorithm [27]. In brief, speckles were tracked consecutively
across frames in two directions (laterally; perpendicular to the
beam, axially; along the beam) with a kernel size of 0.59 mm later-
ally and 0.24 mm axially, using normalized cross-correlation as
for radial, longitudinal and circumferential strain estimation of the carotid
gh-frequency ultrasound, Ultrasonics (2014), http://dx.doi.org/10.1016/
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Table 1
Characteristics for standard clinical and high-frequency ultrasound imaging.

System Transducer Transmitted frequency (MHz) Frame rate (fps) Image depth/width (mm)

Standard clinical ultrasound Vivid 7 12L 12 43.2 30/27
High-frequency ultrasound Vevo 2100 MS250 21 37.5a 30/14

fps; frames per second.
a Downsampled from 75 fps to 37.5 fps.

Fig. 3. Ultrasound sample images. Ultrasound long-axis (left) and short-axis (right)
in end-diastole of a phantom constructed with 3 freeze–thaw cycles acquired by the
clinical ultrasound system, Vivid 7 (a and b) and high-frequency system, Vevo 2100
(c and d). The white boxes represent the region of interest (ROI) for radial strain (c),
longitudinal strain (a) and circumferential strain (b). The images have been slightly
zoomed for better visualization of the phantom.
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similarity measure. The kernels were slid over the image with 40%
axial and lateral overlap and spline interpolation of the cross-cor-
relation function was used to detect sub-sample motion. A 2D
median filter was applied on a region of approximately 0.1 mm
(axial) by 0.4 mm (lateral) to remove outliers, followed by linear
interpolation between samples to obtain motion estimates in the
entire image. Subsequently, the displacement maps were cumu-
lated throughout each pump cycle using linear interpolation to
account for sub-pixel motion.

In the long-axis views from both ultrasound systems, radial (i.e.
perpendicular to the flow direction) and longitudinal strains (i.e.
along the flow direction) were estimated throughout three and
one pump cycle for the clinical and the high-frequency ultrasound
system, respectively. Strains were estimated in a region of interest
(ROI) manually positioned in the middle of the posterior vessel
wall at a longitudinal distance of approximately 25 mm from the
fixing collar of the phantom. The ROI width was 3 mm when calcu-
lating radial strains and 5.4 mm when calculating longitudinal
Please cite this article in press as: M. Larsson et al., Ultrasound speckle tracking
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strains whereas the ROI length was 0.5 mm for both radial and lon-
gitudinal strain estimation. The larger ROI width for longitudinal
strain estimation than for radial strain estimation was chosen in
order to partly compensate for the lower spatial resolution in the
lateral direction of the image. Fig. 3 shows ultrasound gray-scale
images from one of the phantoms with indicated ROIs for longitu-
dinal (Fig. 3a) and radial (Fig. 3c) strain estimation.

In the short-axis views from both ultrasound systems, the lat-
eral and axial displacement maps were converted into polar coor-
dinates when calculating the circumferential strain. Strains were
estimated throughout three and one pump cycle for the clinical
and the high-frequency ultrasound system, respectively, in a circu-
lar ROI positioned in the middle of the phantom wall at 3 o’clock
(radial ROI size = 0.5 mm, circumferential ROI size = 90�). Fig. 3
shows ultrasound gray-scale images from one of the phantoms
with indicated ROI for circumferential strain estimation (Fig. 3b).

The strain values were obtained by spatial linear regression
after averaging the cumulated displacement maps in one direction
of the ROI (radially for longitudinal strain, longitudinally for radial
strain and radially for circumferential strain). Finally, the esti-
mated strain curves were drift compensated to obtain values of
zero strain at the end of each pump cycle. The drift compensated
strain (eDC) in frame t was calculated as:

eDCðtÞ ¼ eðtÞ �
Pt

i¼1jeðiÞ � eði� 1ÞjPT
j¼1jeðjÞ � eðj� 1Þj

eðTÞ ð1Þ

where frame 1 was the first frame and frame T the last frame in the
pump cycle. Subsequently, the strain curves were low-pass filtered
in order to remove noise, by convolving the curves with a normal-
ized rectangular function of 4 time samples in length.

2.4.2. Sonomicrometry
The inter-crystal displacement curves between crystal 1 and 5,

crystal 2 and 3, crystal 2 and 4, and crystal 3 and 4 were median
filtered with a filter length of 35 ms to reduce noise. Subsequently,
the curves were averaged over six pump cycles. According to the
law of cosines, the radial instantaneous length DR(t) was calculated
as:

DRðtÞ ¼ D2�4ðtÞ � sin a cos
D2

2�4ðtÞ þ D2
2�3ðtÞ � D2

3�4ðtÞ
2� D2�4ðtÞ � D2�3ðtÞ

 !
ð2Þ

where D2�3(t) was the inter-crystal distance between crystal 2 and
3 at time point t, i.e. the longitudinal stretching DL(t), D2�4(t)
between crystal 2 and 4 and D3�4(t) between crystal 3 and 4. The
circumferential stretching DC(t) in the middle of the wall equaled
the distance between crystal 1 and 5 subtracted by DR(t). The radial
(R), longitudinal (L) and circumferential (C) strain (e) was then cal-
culated throughout one pump cycle as:

eiðtÞ ¼
DiðtÞ � DiðtoÞ

DiðtoÞ

� �
ð3Þ

where Di(t0) was the inter-crystal displacement at the start of the
pump cycle and Di(t) the inter-crystal displacement at time point
t with i = R, L, C.
for radial, longitudinal and circumferential strain estimation of the carotid
gh-frequency ultrasound, Ultrasonics (2014), http://dx.doi.org/10.1016/
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2.4.3. Statistical analysis
The peak radial, longitudinal and circumferential strains were

identified in the strain curves obtained by speckle tracking and
sonomicrometry. It should be noted that peak radial strains were
negative, whereas longitudinal and circumferential peak strains
were positive. Estimated peak strains were correlated with refer-
ence peak strains obtained by sonomicrometry using the Pearson
correlation coefficient. For peak strain values obtained from Vivid
7 data, both the peak value from the first cycle and the peak strain
averaged over three cycles were used in the correlation analysis.
The data were also processed in a Bland–Altman analysis, where
the bias in the strain estimation was calculated as the difference
between the estimated and reference peak strain values
(êpeak � epeak) averaged over all phantoms and flows. A paired t-test
was used to test if there was a significant bias in the estimations
and if the difference in bias between estimation on clinical and
high-frequency ultrasound data was significant. The root mean
square error (RMSE) between reference and estimated strains
throughout one pump cycle was calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1

ðeðtÞ � êðtÞÞ2

T

vuut ð4Þ

where êðtÞ was the estimated strain, eðtÞ the reference strain and T
the number of frames in one pump cycle. Only the first pump cycle
for the estimation based on clinical ultrasound data was selected for
RMSE calculation. A paired t-test was used to test if the RMSE
significantly differed between estimation on clinical and high-
frequency ultrasound data. P-values lower or equal to 0.05 were
considered significant.

Moreover, the variability in peak strain values over time was
calculated as the relative mean difference (RMD) between the
three peak strain values obtained from estimation based on the
clinical ultrasound data as:

RMD ¼ jê1 � ê2j þ jê1 � ê3j þ jê2 � ê3jð Þ
3� e

� 100 ð5Þ

where ê1�3 was the estimated peak strain for each of the three
pump cycles and e the peak reference strain.
3. Results

The strain curves estimated by the speckle tracking algorithm
cyclically varied over time, showing a radial compression (negative
strain), a circumferential stretching (positive strain) and a longitudi-
nal stretching (positive strain) in the first half of the pump cycle
mimicking the cardiac systole. Overall, the estimated strain corre-
sponded well with the reference strain acquired with sonomicrom-
etry. Example strain curves throughout three pump cycles from
estimation on clinical ultrasound data and sonomicrometry in two
of the phantoms (3 freeze–thaw cycles) are shown in Fig. 4.

Fig. 5 shows correlation (Fig. 5a–c) and Bland–Altman plots
(Fig. 5d–f) based on peak strain estimation on the clinical ultra-
sound data averaged over three pump cycles, whereas Fig. 6 shows
correlation plots (Fig. 6a–c) and Bland–Altman plots (Fig. 6d–f)
based on peak strain estimation on data acquired by the high-
frequency ultrasound system throughout one pump cycle.

Table 2 presents bias, RMD and RMSE from strain estimation on
images obtained by the clinical and high-frequency ultrasound sys-
tem for radial, longitudinal and circumferential strain estimation.
The peak circumferential strain was slightly underestimated when
using the clinical ultrasound system (p < 0.05), whereas no signifi-
cant bias was found in the estimation of peak radial and longitudi-
nal strain. The variability of peak strain estimation based on data
from the clinical ultrasound system over the three cardiac cycles
Please cite this article in press as: M. Larsson et al., Ultrasound speckle tracking
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expressed as RMD varied between 19.87% and 31.97% for the three
estimation directions.

When comparing speckle tracking performance on the clinical
and high-frequency ultrasound data, only strain curves from the
first pump cycle from the estimation on clinical data were consid-
ered. This was done because the Vevo 2100 system only allowed
acquisition of one pump cycle due to limitations in storage capac-
ity. When considering only the first pump cycle, the estimation
based on clinical ultrasound data resulted in a correlation coeffi-
cient between estimated peak strain and reference strain of 0.86
(p < 0.001) for radial strain, 0.70 (p < 0.01) for longitudinal strain
and 0.83 (p < 0.001) for circumferential strain (not shown in
figure). When estimating circumferential strain, a significant dif-
ference in bias and RMSE was found between estimation on clinical
and high-frequency ultrasound data (see Table 2), showing a larger
bias and RMSE for the estimation based on data from the clinical
ultrasound system. No significant difference in bias and RMSE
was found between radial and longitudinal strain estimation on
ultrasound images acquired by the clinical and high-frequency
ultrasound system.
4. Discussion

In this study, radial, longitudinal and circumferential strain esti-
mation of the carotid artery, by speckle tracking using a clinical
and high-frequency ultrasound system, was validated in an exper-
imental setup via sonomicrometry. In general, good agreement was
found between ultrasound speckle tracking and sonomicrometry
strain which indicates the feasibility of carotid strain estimation
using ultrasound speckle tracking. These results are consistent
with previous studies reporting the feasibility to estimate strain
of the carotid artery in silico [17,27,35], in vitro [17,18] and
in vivo [36]. However, most studies have focused on radial and cir-
cumferential strain assessment and experimental validation of
arterial strain in three directions via an independent method has
to the authors’ knowledge only been presented in our preliminary
in vitro study using clinical ultrasound in a smaller set of
phantoms.

The bias and RMSEs found in this study were overall larger than
in our previous in silico study in which the performance of the
speckle tracking algorithm was assessed on simulated two-dimen-
sional ultrasound images of a cylindrical carotid artery model [27].
The larger errors in this study may be the result of a validation set-
ting that was more similar to the in vivo setting, inducing a larger
amount of noise and imaging artifacts. Furthermore, the use of
sonomicrometry compared with the ground truth of the model
most probably resulted in larger discrepancies between estimation
and reference. The spatial resolution of the sonomicrometry
system was 15.4 lm with an absolute accuracy of 250 lm, which
corresponded to 1=4 wavelength of the transmitted ultrasound.
4.1. Strain estimation on the standard clinical ultrasound data

The in vitro validation based on clinical ultrasound data showed
strong significant correlations with sonomicrometry when esti-
mating peak radial (r = 0.91) and circumferential (r = 0.90) strain
averaged over three pump cycles. The correlation between esti-
mated and reference peak longitudinal strain (r = 0.73) was weaker
but still sufficient to demonstrate correlation between the meth-
ods. As demonstrated in the Bland–Altman plots (Fig. 5), speckle
tracking showed a tendency to overestimate radial strain, whereas
both longitudinal and circumferential strains were underesti-
mated. However, the bias was only significant for circumferential
strain estimation (p < 0.001), which may be related to the fact that
the phantoms were positioned in an open box with different
for radial, longitudinal and circumferential strain estimation of the carotid
gh-frequency ultrasound, Ultrasonics (2014), http://dx.doi.org/10.1016/
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Fig. 4. Strain estimation sample curves. Radial strain (upper plots), longitudinal strain (mid plots) and circumferential strain (lower plots) from three consecutive pump
cycles estimated by ST using the clinical ultrasound system (Vivid 7) and reference strain by SONO in two (a and b) polyvinyl alcohol phantoms (3 freeze–thaw cycles) at a
peak flow of 35 ml/s. ST; speckle tracking, SONO; Sonomicrometry.
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surrounding conditions at the top and bottom and that circumfer-
ential reference strain was assessed from diameter change and
thus dependent on movement of both the near and far wall of
the phantom. The difference in boundary conditions may have
influenced the estimation in the circumferential direction more
than in the radial and longitudinal direction, since the discrepancy
in measurements sites for speckle tracking and sonomicrometry
was larger for circumferential strain than for radial and longitudi-
nal strain, which both were assessed in the far wall of the phan-
toms. Moreover, the relative small RMD in the circumferential
direction may be a proof of reliable measurements whereas the rel-
ative large bias indicates that the slightly different measurement
sites influenced the comparison of estimated and reference strain.

Further, the limits of agreement related to the estimated strain
amplitude were lower in the radial and circumferential direction
than for longitudinal strain estimation. The lower lateral resolution
and small lateral displacements in relation with the wavelength of
the applied ultrasound were most likely causes of the weaker
Please cite this article in press as: M. Larsson et al., Ultrasound speckle tracking
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correlation and larger limits of agreement for longitudinal strain
estimation compared with estimation in the radial and circumfer-
ential dimension. However, since a lower accuracy was expected
longitudinally, a larger motion gradient estimation length was
used in the lateral direction to in some extent compensate for
the lower lateral resolution. However, this could apparently not
fully compensate for this effect.

The pulsatile pump performed a reproducible inflow profile to
the phantoms over time imposing a low variability in phantom
peak strain over consecutive pump cycles. However, a relative high
variability in estimated peak strain values (20% < RMD < 32%) over
consecutive pump cycles was obtained in the clinical ultrasound
data set. Moreover, the variability in strain values over consecutive
pump cycles was higher for longitudinal strain estimation than for
radial and circumferential strain estimation, which also indicates
that longitudinal strain estimation is more challenging. This stres-
ses the importance of repeated measurements in future studies
when assessing arterial strain in vivo. Most probable, the in vivo
for radial, longitudinal and circumferential strain estimation of the carotid
gh-frequency ultrasound, Ultrasonics (2014), http://dx.doi.org/10.1016/
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Fig. 5. Strain estimation results on the clinical ultrasound data (Vivid7). The data represent three pump cycles in four PVA-phantoms at peak flows of 14, 21, 28 and 35 ml/s.
(a–c) Correlation plots of peak radial, longitudinal and circumferential strain by ST (mean of three pump cycles) and strain by SONO. The linear regression line, correlation
coefficient (r) and significance level (p) are shown in the plots. (d-f) Bland-Altman plots of peak radial, longitudinal and circumferential strain by ST (mean of three pump
cycles) and SONO. The mean (bold line) and limits of agreement (±1.96 SD, dashed lines) have been marked in the plots. ST; speckle tracking, SONO; sonomicrometry, PVA;
polyvinyl alcohol, SD; standard deviation.
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setting further increases the demand of repeated measurements,
since e.g. breathing and unstable transducer placement may lead
to out-of-plane motions and speckle decorrelation. In a clinical
application, measurements throughout several cardiac cycles
would be preferable to allow cycles with large variation in strain
amplitude to be excluded from the analysis.

To demonstrate the clinical applicability of the presented
speckle tracking algorithm, the accuracy of the method has to
be related to clinical relevant differences in arterial strain values.
According to previous studies, a difference of approximately 4% in
circumferential strain was observed between young and old
healthy subjects [36,37], whereas radial strain differed up to
10% between patients with coronary artery disease and healthy
control subjects [20]. Although these studies were performed with
other ultrasound systems and speckle tracking algorithms and
furthermore limited to small patient populations, these findings
indicate that the proposed algorithm in this study may have
potential to detect clinical relevant differences in radial strain,
whereas the limits of agreement for circumferential strain were
slightly higher than the difference observed between young and
old healthy subjects. However, the difference in circumferential
strain between healthy and diseased subjects needs to be further
investigated.

4.2. Comparison of strain estimation on the clinical and high-
frequency ultrasound

This study also investigated if the use of a high-frequency ultra-
sound system could improve arterial speckle tracking performance
because of e.g. increased spatial resolution. In this case, an
improvement in lateral resolution could be expected and thus a
Please cite this article in press as: M. Larsson et al., Ultrasound speckle tracking
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longitudinal strain estimation of higher accuracy. The correlation
coefficient of peak longitudinal strain increased from r = 0.70 to
r = 0.93, which indicates an improved estimation in the longitudi-
nal direction when applying the speckle tracking algorithm on
ultrasound data obtained by the high-frequency ultrasound system
compared with the clinical system. Also the limits of agreements
for longitudinal strain estimation were slightly lower when using
the high-frequency data compared with the clinical data. However,
the longitudinal bias did not significantly decrease when using
high-frequency ultrasound.

Similar results as for longitudinal strain estimation were
obtained for radial strain estimation, when comparing estimation
based on the clinical and high-frequency ultrasound data. The
correlation coefficient and bias slightly improved but no
significant difference in bias was obtained. On the contrary, a
significant decrease in bias magnitude was found for circumfer-
ential strain estimation when using the high-frequency ultra-
sound system, which may be a result of the improved lateral
resolution since circumferential strain estimation relies on both
lateral and axial estimation when converting the motion
estimates into polar coordinates. A possible reason why circum-
ferential and not longitudinal strain estimation improved with
increased spatial resolution may be the difference in amplitude
values. Longitudinal peak strain values were lower (<1.5%) than
circumferential peak strain values (<15%), imposing low inter-
frame displacements close to sub-pixel level, which are difficult
to track. As a result, the improved lateral resolution may have
had a larger influence when estimating circumferential strain.
This was also reflected in the RMSE, which was significant lower
only in the circumferential direction, see rightmost column in
Table 2.
for radial, longitudinal and circumferential strain estimation of the carotid
gh-frequency ultrasound, Ultrasonics (2014), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.ultras.2014.09.005
http://dx.doi.org/10.1016/j.ultras.2014.09.005


Fig. 6. Strain estimation results on the high-frequency ultrasound data (Vevo 2100). The data represent one pump cycle in four PVA-phantoms at peak flows of 14, 21, 28 and
35 ml/s. (a–c) Correlation plots of peak radial, longitudinal and circumferential strain by ST and strain by SONO. The linear regression line, correlation coefficient (r) and
significance level (p) are shown in the plots. (d–f) Bland Altman plots of peak radial, longitudinal and circumferential strain by ST and SONO. The mean (bold line) and limits of
agreement (±1.96 SD, dashed lines) have been marked in the plots. ST; speckle tracking, SONO; sonomicrometry, PVA; polyvinyl alcohol, SD; standard deviation.

Table 2
Strain estimation results. The data represent speckle tracking strain estimation on images acquired with the clinical ultrasound system, Vivid 7 (one pump
cycle and mean over three pump cycles) and high-frequency ultrasound system, Vevo 2100 (one pump cycle) in four phantoms at four different peak flows
(n = 16). Bias, RMD (Eq. (5)) and RMSE (Eq. (4)) for radial, longitudinal and circumferential strain estimation are presented as mean values ± SD. The bias
differed significantly from zero only for the circumferential strain estimation on the clinical ultrasound data. The difference (D) in bias and RMSE (Eq. (5))
between estimation on clinical and high-frequency ultrasound data for radial, longitudinal and circumferential strain estimation throughout one pump
cycle are presented as mean values ± SD in the right most column. Significant difference was found only when comparing bias and RMSE for
circumferential strain estimation. The levels of significance have been marked by stars. RMD; relative mean difference, RMSE; root mean square error, SD;
standard deviation.

Vivid 7 mean of 3 cycles Vivid 7 1 cycle Vevo 2100 1 cycle D (Vivid 7 – Vevo 2100) 1 cycle

Radial strain
Bias (%) �0.55 (1.34) �0.31 (1.05) �1.12 (1.05) 0.81 (1.66)
RMD (%) 25.93 (20.69) – – –
RMSE (%) – 2.35 (1.55) 1.79 (0.81) 0.56 (1.80)

Longitudinal strain
Bias (%) �0.12 (0.25) �0.14 (0.17) �0.05 (0.13) �0.09 (0.27)
RMD (%) 31.97 (27.75) – – –
RMSE (%) - 0.26 (0.13) 0.21 (0.12) 0.05 (0.13)

Circumferential strain
Bias (%) �1.54 (1.60) b �1.70 (1.82)a �0.30 (1.49) �1.41 (2.52)a

RMD (%) 19.87 (11.97) – – –
RMSE (%) – 3.46 (1.20) 2.76 (1.43) 0.70 (1.20)a

a p < 0.05.
b p < 0.001.
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In general, the strain estimation results were slightly better
when applying the speckle tracking algorithm on data from the
high-frequency system compared with the clinical system, even
though the estimation was significantly improved only in the cir-
cumferential direction. This implies that an increase in transmitted
ultrasound frequency from 12 MHz to 21 MHz is not sufficient to
highly improve the accuracy of the speckle tracking algorithm. As
Please cite this article in press as: M. Larsson et al., Ultrasound speckle tracking
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such, both systems can be used nearly interchangeable in the arte-
rial strain application. However, other factors that could have
influenced the strain estimation performance might be differences
in filters and other image processing features between the two sys-
tems that could not be controlled in this study. The imaging
parameters of the Vivid 7 system were chosen according to the
previous in silico study in which this system using a 12L linear
for radial, longitudinal and circumferential strain estimation of the carotid
gh-frequency ultrasound, Ultrasonics (2014), http://dx.doi.org/10.1016/
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array transducer was simulated [27]. The imaging parameters for
acquisition of the high-frequency data sets were chosen to resem-
ble the setting of the clinical system. However, equivalent imaging
setups were not obtained due to limitations in possible parameter
selections by the user. As such, only one pump cycle could be
stored for the Vevo 2100 system and the frame rate had to be
downsampled to be in the same range as for the Vivid 7 system.
Still, the frame rates were not precisely corresponding which could
have influenced the tracking results. Furthermore, speckle tracking
was performed on envelope-detected data from the Vivid 7 system
whereas the data from the Vevo 2100 system were RF-data, which
may have been an advantage for the estimation on high-frequency
data. However, our previous study demonstrated no significant dif-
ference when estimating arterial strain on envelope-detected data
and RF-data when transmitting the same center frequency [27].

4.3. Limitations

This study was limited to an experimental validation setup and
the feasibility of ultrasound speckle tracking for carotid strain
assessment needs to be further investigated in vivo. The vessel
phantoms were manufactured with appropriate geometry and
mechanical and acoustical tissue properties to mimic the common
carotid artery [34]. Still, the strain values in this study differed
from those previously reported in vivo [20,36], in particular the
longitudinal ones, which were lower compared with strain values
observed in vivo [38]. The fixation at each end of the phantom
restricted the longitudinal movement, which could probably have
been avoided by letting one end of the phantom freely move. In
addition, the range of peak flows included lower peak flows than
normally observed in vivo to get a wider range of values for the cor-
relation analysis. Furthermore, the wall thickness of the vessel
phantom was 3 mm, which is larger than the intima media thick-
ness of a human carotid artery [3]. However, to fabricate a phantom
with a thinner vessel wall was difficult to realize. Instead, to mimic
strain assessment in the human carotid artery, the ROI length was
kept small (0.5 mm) and the ROI was placed in the center of the
phantom wall. In addition, the three layers of the artery and their
different mechanical properties and geometry may affect the per-
formance of the speckle tracking algorithm in in vivo applications.
Also, the circumferential strain may be more difficult to estimate
in vivo due to asymmetries of the artery in the short-axis view.

Both sonomicrometry and speckle tracking strain estimation
might have induced errors. A common source of error in ultra-
sound-based strain estimation is speckle decorrelation due to tis-
sue compression and out-of-plane motion. Moreover, the use of
sonomicrometry as reference method can be questioned, since its
accuracy is limited in terms of spatial resolution when measuring
such small distances. Another factor that could have influenced
the discrepancy between the methods was slightly different mea-
surement sites, which was necessary in order to avoid interference
of the crystals in the tracking process and also a result of manual
placement of the ultrasound transducer. Moreover, to avoid sound
interference, the sonomicrometry and ultrasound system did not
operate simultaneously. However, as already mentioned the pump
achieved a stable movement pattern of the phantom over consec-
utive pump cycles, which allowed for accurate temporal alignment
of ultrasound and crystal data using the simulated ECG-signal from
the pump.

4.4. Future perspectives

An accurate method allowing for arterial strain assessment has
potential to be used in the clinical setting providing measures of
arterial stiffness and plaque vulnerability. In a broader perspective,
an accurate method for arterial strain assessment could help to
Please cite this article in press as: M. Larsson et al., Ultrasound speckle tracking
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increase the general understanding of the cardiovascular system.
The literature lacks on larger studies reporting arterial strain val-
ues in vivo, especially longitudinal strain values. The number of
studies describing longitudinal strain of the arterial wall is cur-
rently limited and further research is required to determine the
clinical value of arterial longitudinal motion and strain estimations
although it has been shown that the longitudinal motion of the
artery may be an important factor in early detection of cardiovas-
cular diseases [39]. Recent findings also associate reduced longitu-
dinal artery wall motion with plaque burden [29] and potential to
predict cardiovascular outcome [40], which indicates that the
arterial longitudinal function is an important contributor in the
evaluation of cardiovascular diseases.

The presented validation setup can be used for future improve-
ments of speckle tracking algorithms applied on the arterial wall,
e.g. development of speckle tracking applied on three-dimensional
vascular data sets. Additionally, it would be of interest to further
validate the algorithm via invasive measurements in experimental
animal models and atherosclerotic plaque models to further mimic
the setting in clinical practice. The in vivo setting is however chal-
lenging given that more motion artifacts due to e.g. breathing are
present. Moreover, further studies are needed to test the feasibility
of this algorithm in large patient populations in order to under-
stand the strain pattern of the carotid artery in vivo, its dependence
on e.g. age, gender and disease and to determine the clinical value
and importance of carotid strain in the estimation of arterial
stiffness and characterization of atherosclerotic plaques.

5. Conclusions

This study demonstrates that radial, longitudinal and circum-
ferential strain assessment of the carotid artery wall is feasible
when applying speckle tracking on ultrasound data sets of gel
phantoms acquired by a clinical and high-frequency ultrasound
system. The speckle tracking performance was not considerably
improved when applied on data from the high-frequency ultra-
sound system compared with the clinical ultrasound system.
Further studies are needed to validate the algorithm on in vivo data
and to investigate the potential of the method to estimate arterial
stiffness and characterize atherosclerotic plaques.
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