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a b s t r a c t

In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from
peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an impor-
tant contribution to the motor control of this task. One factor that can complicate the ability of these
receptors to act as length, velocity and force transducers is the complex pattern of interaction between
muscle and tendinous tissues, as tendon length is often considerably greater than muscle fibre length
in the human lower limb. In essence, changes in muscle–tendon mechanics can influence the firing
behaviour of afferent receptors, which may in turn affect the motor control. In this review we first
summarise research that has incorporated the use of ultrasound-based techniques to study muscle–
tendon interaction, predominantly during walking. We then review recent research that has combined
this method with an examination of muscle activation to give a broader insight to neuromuscular inter-
action during walking. Despite the advances in understanding that these techniques have brought, there
is clearly still a need for more direct methods to study both neural and mechanical parameters during
human walking in order to unravel the vast complexity of this seemingly simple task.

� 2010 Elsevier Ltd. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2. Animal studies as the basis of knowledge about neuromechanics during movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3. Making the transition from animals to humans: Ultrasonography as a non-invasive tool to study muscle–tendon behaviour. . . . . . . . . . . . . . 199
4. Muscle–tendon interaction during human walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5. Methodological considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6. Combining the study of neural and mechanical parameters during human walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7. Investigating corrective responses to perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8. Afferent contribution to background locomotor activity in walking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.1. Investigating afferent feedback using natural perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.2. Breaking the feedback loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
ll rights reserved.

y-Motor Interaction, Depart-
ersity, Fredrik Bajers Vej 7D3,
1. Introduction

In humans, one of the most common tasks in everyday life
is walking, and the average human takes several thousand steps
per day. It is generally accepted that the complex motor control
of walking involves the integration of information from
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supraspinal structures (e.g. Armstrong, 1988), rhythm generating
structures at the spinal level (Grillner, 1975) and sensory afferent
feedback from peripheral receptors (for reviews see Duysens
et al., 2008; Rossignol et al., 2006; Zehr and Stein, 1999). With re-
gard to the latter component, the importance of afferent feedback
is clearly articulated when examining Ian Waterman, an individual
who lacks proprioception from large myelinated afferent nerve fi-
bres, and thus relies on other sensory cues to determine the orien-
tation of his limbs (af Klint et al., 2008). Relying heavily on visual
feedback, Ian is unable to move in the dark (Cole and Sedgwick,
1992), and all movement requires complete visual attention due
to the lack of sensory input to the central nervous system that usu-
ally helps to control movement accurately.

During walking, afferent feedback has been suggested to play
three broad but distinct roles: contribute to ongoing muscle activ-
ity during unconstrained walking, to contribute to corrective re-
sponses to sudden perturbations and to trigger phase transitions
in the gait cycle, (e.g. Donelan and Pearson, 2004; Pearson, 2004;
Grey et al., 2004; Sinkjaer et al., 2000). In addition, afferent feed-
back plays a crucial role in motor program adaptation and novel
motor learning. In recent years, we have investigated the roles of
various afferents that contribute to the normal background activa-
tion that occurs in unconstrained walking, as well as those in-
volved in corrective responses to sudden perturbations. Since our
data have enabled us to rule out the contribution of certain affer-
ents, including cutaneous afferents and proprioceptors of the foot
(e.g. Grey et al., 2002, 2004), much of our work has focussed on
two receptors: the muscle spindles and the Golgi tendon organs
(GTO). Muscle spindles are mechanoreceptors located among the
muscle fibres, and are capable of monitoring muscle length, veloc-
ity and acceleration. There are two types of sensory afferents orig-
inating in the spindles: primary and secondary. Primary muscle
spindle afferents, referred to as group Ia fibres, predominantly
sense velocity, but are also capable of detecting length changes,
whereas secondary muscle spindle endings, referred to as group
II fibres, predominantly sense changes in muscle length (Edin
and Vallbo, 1988; Edin and Vallbo, 1990a,b; Kakuda, 2000; Mat-
thews and Stein, 1969). Golgi tendon organs are force-sensitive
mechanoreceptors that are innervated by fast-conducting Ib affer-
ent fibres. GTOs are mostly located at points where muscle fibres
connect to tendinous tissue, including deep intramuscular tendons
or aponeuroses (Crago et al., 1982; Houk and Henneman, 1967; for
a review see Jami, 1992).

Until recently, investigations of the motor control of walking
have used mechanical or electrical perturbations of the leg com-
bined with the measurement of muscle activity as an experimen-
tal model. Many of the existing methods, such as surface
electromyography (sEMG), are necessarily indirect. Although di-
rect neural recording techniques do exist, it has not yet been pos-
sible to implement them during human walking. For example,
microneurography is a valuable method that has yielded advances
in our understanding of motor control (for a review see Mano
et al., 2006). However, with this method data are obtained from
humans in situ, and it has yet to be successfully applied during
walking. Some studies have measured muscle–tendon unit
(MTU) length and used it to infer about muscle fibre and even
muscle spindle activity. However, the MTU consists of both mus-
cular and tendinous tissues, which complicates this estimation. In-
deed, direct data measured in cats suggest that this approach is
likely to be erroneous as MTU length diverges from muscle fibre
length in some portions of the stance phase (Griffiths, 1991; Hof-
fer et al., 1989). As an alternative to measuring MTU length, it is
now possible to estimate muscle fascicle (or fibre) length in hu-
mans in vivo using ultrasonography, a non-invasive imaging
modality that has been successfully employed during walking
and other movements.
The use of imaging to study muscle and tendon behaviour in
humans has dramatically increased our understanding of mus-
cle–tendon architecture, and it has become increasingly apparent
that precise knowledge of the anatomic features of muscle, apo-
neurosis and tendon is necessary to understand how a muscle–ten-
don unit (MTU) generates force and accomplishes length changes
(for a review see Finni, 2006). For example, in the human triceps
surae complex, muscles are attached to long tendons that exhibit
elasticity, which can have a decisive influence on the pattern of
length changes that muscles undergo during movement and can
thus also influence movement efficiency (for reviews see Magnus-
son et al., 2008; Roberts, 2002). Furthermore, there is an increasing
realisation that changes in muscle–tendon mechanics, which influ-
ence the firing behaviour of sensory afferent receptors, may in turn
affect motor control.

The purpose of this review is to summarise research that has
incorporated the use of ultrasound-based techniques to study
muscle–tendon interaction, predominantly during walking. We
then review recent research that has used ultrasound imaging to
study the broader issue of neuromechanical control during human
walking.
2. Animal studies as the basis of knowledge about
neuromechanics during movement

For several decades it has been recognised that due to the
effects of tendon compliance, a movement imposed at a joint is
not necessarily faithfully imposed upon muscle fibres. Conse-
quently, sensory receptors located among extrafusal muscle fibres
(muscle spindles) may ‘sense’ an attenuated version of the stretch
imposed on the joint (e.g. Rack et al., 1983). As a result, it seems
intuitive to examine length changes at the muscle fascicle (or fibre)
level. As the gamma system is known to influence muscle spindle
sensitivity, and this effect is not directly measurable in vivo, fasci-
cle length does not provide a direct indication of muscle spindle
output, but it is likely to yield a better estimate of this parameter
than measuring MTU length. Before examining data obtained in
humans, it is important to first highlight findings in animals; due
to the relative ease of employing invasive methods in many animal
species, a large number of studies have been published concerning
muscle–tendon interaction, many of which have served as a basis
for non-invasive study in humans.

From the late 1980s onwards, a series of papers were pub-
lished using a method that enabled direct measurements of mus-
cle fibre length in animals during movement (Griffiths, 1987,
1991; Hoffer et al., 1989). Sonomicrometry uses piezoelectric
crystals to measure distances within an aqueous medium. Pairs
of crystals are inserted at both ends of a muscle fibre, and these
crystals generate waves of ultrasound that travel at known veloc-
ities in biological tissue. One crystal acts as a transmitter and the
other as a receiver. Distances between the two crystals are calcu-
lated based on the transit time of the ultrasound waves between
them, combined with knowledge of the speed of sound through
the tissue.

Using sonomicrometry, data obtained from walking cats have
provided convincing evidence that length changes at the MTU level
are not necessarily representative of length changes of the muscle
fibres (Griffiths, 1987, 1991; Hoffer et al., 1989). The first studies in
this field showed that at some phases of the step cycle, length
changes of the muscle fibres actually occurred in the opposite
direction to those of the MTU, which is effectively due to the com-
pliance of tendinous tissues. These findings had obvious implica-
tions for the motor control of walking, and raised concerns over
the use of MTU length as a predictor of muscle fibre or even spindle
activity (see Maas and Lichtwark, 2009; Maas et al., 2009).
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In animals, the subsequent use of sonomicrometry, in combi-
nation with the assessment of directly measured tendon forces
and recording of muscle activity (Higham et al., 2008; McGuigan
et al., 2009; Roberts et al., 1997), has provided valuable informa-
tion about neuromechanical interactions during walking in re-
sponse to changes in surface slope (Gregor et al., 2006; Higham
et al., 2008; Maas et al., 2009; McGuigan et al., 2009; Roberts
et al., 1997) and walking speed (Prilutsky et al., 1994), as well
as information about synergistic muscle behaviour (Higham
et al., 2008; Maas et al., 2009; Prilutsky et al., 1994). During cat
locomotion, for example, medial gastrocnemius (MG) and soleus
(Sol) contribute differently to the generation of force and mechan-
ical energy (Fowler et al., 1993; Gregor et al., 1988; Herzog et al.,
1993; Prilutsky et al., 1994, 1996; Walmsley et al., 1978), and this
may influence the sensory input to the central nervous system
from each muscle (Prilutsky et al., 1996). For example, Sol fasci-
cles have been shown to lengthen after ground contact, whereas
MG fascicles shortened (Maas et al., 2009). Accordingly, the
authors suggested that the potential role of length feedback (from
muscle spindle type II afferents) may be greater in Sol than in MG.
They also noted that this would be consistent with the observa-
tion that spindle density is greater in Sol than gastrocnemius
(Chin et al., 1962). Regarding spindle Ia afferents, these structures
are predominantly velocity-sensitive (but do still sense length), so
differences in fascicle lengthening velocity between muscles may
also influence the relative importance of Ia afferents in a given
muscle.
Fig. 1. Left: Illustration of the sonomicrometry technique, showing a pair of crystals imp
and the method used to calculate the distance between the crystals (bottom). Dt denotes
the receiver crystal, and L represents fascicle length. Right: Demonstration of the sonar p
are used to form an image of the surrounding environment (top); the same principle i
(middle); positioning of the probe over the human lower limb to enable the MG and Sol fa
frame by frame throughout a given movement or contraction cycle.
3. Making the transition from animals to humans:
Ultrasonography as a non-invasive tool to study
muscle–tendon behaviour

As stated, there is a clear need to investigate fascicle length
changes during human movement since this parameter would al-
most certainly provide a better estimate of muscle spindle activity
than length changes at the MTU level (e.g. Maas and Lichtwark,
2009). Given that tendon compliance can influence the stretch of
muscle fibres, and thus presumably muscle spindles, it is pertinent
to note that in humans, tendon length often greatly exceeds muscle
fibre length. This is particularly true in the gastrocnemius muscle,
and further emphasises the potential mismatch between muscle
fascicle and MTU length changes.

Due to the invasive nature of sonomicrometry, it has been very
difficult to apply this technique to humans. Although limited Achil-
les tendon strain data have been presented (Arndt et al., 2006),
these experiments were stopped prematurely due to subject pain
and difficulties obtaining valid data (Arndt, 2009 – Personal com-
munication). However, a non-invasive alternative, which is also
based on the transmission of ultrasound waves, has been applied
to the study of dynamic human movement in the last two decades.

Ultrasonography (US) works on the echo location, or sonar prin-
ciple (see Fig. 1). A linear array probe is positioned on the skin sur-
face over the structure of interest, and sound waves are emitted
into the tissues. When the sound waves hit different structures
(e.g. muscle fibres), they are reflected (or echoed) back to the
lanted at either end of a muscle fascicle (top), as well as the resulting sound waves
the time between the pulse being sent from the transmitting crystal and arriving at

rinciple in a submarine, whereby sound waves are emitted, and the resulting echoes
n an ultrasound probe where the sound waves travel over much shorter distances
scicles to be visualised (bottom). In theory, a single fascicle is identified and tracked
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probe. As with the sonomicrometry method, knowledge of the
speed of sound through the tissue combined with information
about the send and receive times of the sound waves enables the
distance to each visualised structure to be calculated, and an image
can then be reconstructed. As this process occurs at a high frame
rate, it is possible to use this method to study the length changes
of muscle and tendinous tissues during human movement, pro-
vided that some form of stabilising support device is used to keep
the probe in position.

Despite the relative infancy of the use of US to examine muscle–
tendon mechanics, a wealth of data has been presented using this
method. As the number of publications concerning the use of US
for these purposes is so voluminous, we have not attempted to in-
clude a comprehensive list of publications. Instead, to illustrate the
versatility of this technique, we will briefly summarise some of the
many ways in which the US method has been used to study mus-
cle–tendon interaction in humans.

The technique was initially used during isometric contractions,
with the aim of examining muscle fascicle lengths and pennation
angles at different joint configurations and contraction levels
(e.g. Fukashiro et al., 1995; Henriksson-Larsen et al., 1992; Herbert
and Gandevia, 1995; Kuno and Fukunaga, 1995; Narici et al., 1996;
Rutherford and Jones, 1992). These early studies confirmed that
even in isometric conditions, muscle fascicle length was clearly
modulated with changes in force level, so that for a given MTU
length, fascicle length and pennation angle could markedly differ
depending on the level of force production (e.g. Narici et al.,
1996). More recently, numerous studies have used US to examine
muscle and tendon behaviour during human movement. To date,
the range of movements examined includes running (Ishikawa
and Komi, 2007; Ishikawa et al., 2007; Lichtwark et al., 2007), hop-
ping (Lichtwark and Wilson, 2005a; Peltonen et al., 2010), cycling
(Wakeling et al., 2006), various forms of jumping (Kubo et al.,
1999; Kurokawa et al., 2001; Sousa et al., 2007; Finni et al.,
2003; Galindo et al., 2009), including drop jumps (Hoffren et al.,
2007; Ishikawa et al., 2003, 2005; Ishikawa and Komi, 2004), other
forms of counter movement exercise (Kawakami et al., 2002) and
stair climbing and descent (Chleboun et al., 2008; Spanjaard
et al., 2007, 2008, 2009).

More importantly in the context of this review, the US method
has been applied to the study of human walking (af Klint et al.,
2010; Aggeloussis et al., 2010; Chleboun et al., 2007; Cronin
et al., 2009a,b; Fukunaga et al., 2001; Ishikawa et al., 2005; Licht-
wark and Wilson, 2006; Lichtwark et al., 2007; Mian et al., 2007),
and this is discussed in more detail below with reference to the
behaviour of lower limb muscles. Although the focus of this review
is on walking, the reader is also referred to several reviews of the
use of ultrasound in different experimental settings (Fukashiro
et al., 2006; Fukunaga et al., 2002; Ishikawa and Komi, 2008;
Kawakami and Fukunaga, 2006).

4. Muscle–tendon interaction during human walking

As already alluded to, tendons are not inextensible, but rather
they exhibit important elastic and time-dependant characteristics
that may influence the function of the whole MTU (for reviews
see Magnusson et al., 2008). These tendon properties result in a dy-
namic interaction between the muscle and tendon, which can influ-
ence not only force transmission (Reeves et al., 2003), but also
energy storage and return during locomotion (Ishikawa et al.,
2005; Lichtwark and Wilson, 2005b), muscle fascicle geometry dur-
ing contraction (Narici et al., 1996) and the control of joint position
and movement accuracy (Hoffer et al., 1989; Loram et al., 2005;
Rack et al., 1983). On the basis of recent data, we also suggest that
patterns of muscle–tendon interaction can have an important influ-
ence on sensory afferent feedback (see following sections).
As in animals, measurements of fascicle length during over-
ground and treadmill walking in humans have revealed that mus-
cle fascicle length changes do not match those of the MTU during
the contact phase (e.g. Fukunaga et al., 2001; Ishikawa et al.,
2005, 2007), thus generally confirming the original, direct findings
obtained in cats (Griffiths, 1991; Hoffer et al., 1989). During the
stance phase of walking, the triceps surae muscles and the long,
compliant Achilles tendon have been suggested to act like a cata-
pult (Ishikawa et al., 2005; Sawicki et al., 2009), whereby the Achil-
les tendon first stores elastic energy, and then releases it to
produce a rapid recoil during the push-off phase (Fukunaga et al.,
2001; Ishikawa et al., 2005). One advantage of this sequence is that
it allows muscle fibres to remain nearly isometric, producing force
with very little mechanical work. Concurrently, the tendon takes
up most of the MTU lengthening and stores elastic energy. This
pattern of muscle–tendon interaction enables each tissue to per-
form the task to which it is best adapted, and may thus promote
metabolic efficiency during walking (Sawicki et al., 2009).

Despite the relatively small number of studies incorporating US
during human walking, some common features can be extracted
concerning fascicle behaviour. In the triceps surae muscles, fasci-
cles generally shorten immediately after ground contact due to ra-
pid plantar flexion at the ankle. Throughout the rest of the stance
phase, MG fascicles tend to remain approximately isometric,
although moderate lengthening has been observed (Aggeloussis
et al., 2010; Fukunaga et al., 2001; Ishikawa et al., 2005, 2007;
Lichtwark and Wilson, 2006; Lichtwark et al., 2007). In Sol, much
less data are available, but fascicles appear to lengthen throughout
stance (Cronin et al., 2009b; Ishikawa et al., 2005). Similarly, in the
lateral gastrocnemius (LG), the fascicles lengthen during stance in
young subjects (Mian et al., 2007), suggesting a possible difference
in fascicle behaviour between the medial and lateral heads of this
muscle. In all triceps surae muscles, fascicles shorten towards toe
off. In the tibialis anterior muscle, fascicle length has been shown
to increase towards the end of the stance phase. Furthermore, in
the more proximal vastus lateralis, fascicle length increased by
approximately 40% between ground contact and toe off, although
most of this change occurred towards the end of stance (Chleboun
et al., 2007). It is noteworthy that in LG, fascicle behaviour differed
between young and older subjects (27 vs. 77 years of age; Mian
et al., 2007), whereby fascicles were lengthened less in the stance
phase in older subjects. This finding may well be evident in other
muscles. Since Achilles tendon compliance has been shown to in-
crease with age (for a review see Narici et al., 2008), a decrease
in fascicle lengthening during stance in older subjects is not unex-
pected, and this issue deserves further study in other muscles.

The data summarised here suggest some important differ-
ences between muscles often assumed to be synergists. For
example, as is the case with cats (Maas et al., 2009), the fascicles
of MG and Sol exhibit different patterns of length change during
human walking (Ishikawa et al., 2005). Differences between MG
and LG are also evident, despite the fact that these muscles are
often considered to be functionally equivalent. In light of recent
findings, it is perhaps unsurprising that such inter-muscular dif-
ferences are present. For example, the triceps surae muscles oc-
cupy different proportions of the total physiological cross
sectional area of the group (approximately 15% for GL; 25% for
MG and 60% for Sol; Morse et al., 2005). Length changes of tri-
ceps surae muscles have also been shown to differ during iso-
metric contractions (e.g. Kawakami et al., 1998; Maganaris
et al., 1998, 2006) and drop jumps (Sousa et al., 2007). Further-
more, MG and Sol exhibit shear between their aponeuroses, indi-
cating that they are able to move relatively independently of
each other, despite being attached to a common distal tendon.
This has been observed in isometric conditions (Bojsen-Moller
et al., 2004; Bojsen-Moller et al., 2010 – unpublished observa-
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tions), as well as during hopping and walking (Cronin et al.,
2010 – unpublished observations).

In cats, Maas et al. (2009) suggested that on the basis of fascicle
length changes, length feedback from muscle spindles may be
greater in Sol than MG. Based on the data reported in humans,
the same logic would suggest that length feedback is also more
important in Sol than in MG (but may also be substantial in LG).
A significant challenge in the future will be to assess the relative
importance of specific afferents in different muscles during human
gait.

5. Methodological considerations

Despite the relative ease and practicality of US measurements,
it is important to acknowledge some of the numerous limitations
of this method. Measurements of muscle fascicle architecture dur-
ing walking have been shown to be quite reproducible (Aggeloussis
et al., 2010), but the method is associated with several inherent
limitations (e.g. Benard et al., 2009; Klimstra et al., 2007), the most
pertinent of which is that the method is two-dimensional, and is
used to observe three-dimensional structures. Consequently, the
2-D method may lead to errors in actual fascicle length, and the
size of these errors may vary throughout the step cycle. Unfortu-
nately, methods do not currently exist that allow this issue to be
investigated systematically during movement.

Thus far, analysis of muscle fascicle length has relied on manual
methods, whereby the experimenter is required to digitise several
points, and to do so in numerous consecutive images for the dura-
tion of the movement in question. Consequently, the method is
very time consuming and potentially prone to human error. The
advent of automated techniques may help in this regard (e.g. Rana
et al., 2009), by minimising the possibility of bias and allowing a
larger number of trials to be analysed in a given time. To date,
automated techniques have been successfully applied to the study
of tendinous tissue length changes (Bojsen-Moller et al., 2004;
Magnusson et al., 2003), contractile component length changes
(Loram et al., 2005, 2006, 2009a,b) and muscle fascicle orientation
(Rana et al., 2009). Adaptation of existing methods may thus allow
automatic tracking of fascicle length in the near future.

One issue that has caused some degree of controversy is the
sampling frequency of ultrasound scanning. In general, sampling
frequencies of 30–50 Hz have been reported. In fast movements
such as running and hopping, or when applying rapid perturba-
tions, a high sampling frequency is essential as this provides the
greatest possible time resolution, which increases the likelihood
of observing small, rapid changes in fascicle length that may other-
wise be unobservable (Ishikawa and Komi, 2007). However, during
unperturbed walking, qualitatively similar data have been pre-
sented by different research groups for the MG muscle, despite
the use of sampling frequencies ranging between 30 and 100 Hz.
Consequently, the sampling frequency may not be of major impor-
tance in slower movements like walking, unless event latencies are
of particular importance (af Klint et al., 2010).

Another issue of potential importance is the use of support de-
vices to attach the ultrasound probe to the skin surface when
examining muscle–tendon properties during movement. To verify
that the probe does not move relative to the structure of interest,
some studies have placed a visible marker within the image (Boj-
sen-Moller et al., 2004; Maganaris and Paul, 1999; Magnusson
et al., 2001). Although this appears to be an effective method, an
inverse problem is that when attaching the probe firmly to the skin
to minimise probe movement, the structures being examined are
compressed, so the behaviour observed with US may not be an
accurate representation of unconstrained muscle–tendon behav-
iour. Furthermore, during high force contractions or fast move-
ments, the structure of interest moves proximally and/or distally
relative to the skin and probe. As most probes are between 4 and
8 cm long, it may be difficult to reliably observe the same structure
(such as an individual fascicle) throughout a given movement or
contraction.

Walking studies incorporating US have been conducted on a
treadmill with and without shoes, as well as during overground
walking. The walking speeds employed have also varied between
�3 and 5 km/h. In spite of these variations, the findings in a given
muscle appear to be quite consistent between different studies
performed in different labs. Furthermore, despite its inherent lim-
itations, one of the primary reasons for the popularity of US in this
field is that it remains the most versatile and capable tool of study-
ing muscle–tendon function during human locomotion.
6. Combining the study of neural and mechanical parameters
during human walking

In the MTUs of the human lower limb, tendon length is often
considerably longer than muscle fibre length. Although this
arrangement may be beneficial for the storage and return of elastic
energy, and economical force production (Biewener and Roberts,
2000; Sawicki et al., 2009), it also complicates the ability of sensory
afferents to act as length, velocity and force transducers.

We have recently performed a series of experiments using
ultrasound to study muscle fascicle and tendon behaviour during
human walking, and to attempt to relate this to the firing behav-
iour of sensory afferents. These experiments have adopted two dif-
ferent approaches related to the different roles of afferent
feedback. The following sections outline these two broad ap-
proaches to the study of neuromechanical interaction during
walking.
7. Investigating corrective responses to perturbations

A great deal of research involving perturbations during human
walking has focussed on the role of sensory afferents (Dietz
et al., 1987; Duysens et al., 2008; Grey et al., 2001, 2002, 2004,
2007; Sinkjaer et al., 1996, 2000; Zuur et al., 2009). We have sought
to extend this analysis by using a portable stretch device (Andersen
and Sinkjaer, 1995) to apply rapid dorsiflexion perturbations at the
ankle joint that elicit short latency stretch reflex (SLR) responses
during treadmill walking (Cronin et al., 2009b). We have then com-
bined this method with US to examine muscle fascicle behaviour in
response to the perturbations (see Fig. 2). This method enables
assessment of the excitability of the stretch reflex pathway
throughout the step cycle, whilst systematically varying the inter-
action between muscle and tendinous tissues.

Subjects were required to walk at three different speeds: 3, 4
and 5 km/h. At each speed, we applied the same dorsiflexion per-
turbations at the ankle joint during the mid-stance phase: 6� per-
turbations at 170, 230 and 280�/s. As walking speed increased, the
amplitude and velocity of stretch to the Sol muscle fascicles de-
creased. Concurrently, we observed no changes in SLR amplitudes
between walking speeds. As the decreased fascicle stretch velocity
would be expected to decrease the firing rates of muscle spindle Ia
afferents (Rack et al., 1983), and since Ia-mediated SLR amplitudes
were unchanged, it is possible that contributions from other mech-
anisms served to compensate for decreases in spindle Ia afferent
feedback, thus preventing a decline in SLR amplitudes in response
to perturbations at faster walking speeds. Possible compensatory
mechanisms include a decrease in pre-synaptic inhibition with
increasing walking speed, an increase in descending drive to the
motoneurones leading to an increased excitability of the motoneu-
rone pool, an increased excitatory influence from the Ib afferent
pathway and/or elevated muscle spindle sensitivity via changes



Fig. 2. Schematic of the experimental setup used to elicit fast dorsiflexion perturbations during human walking (left). An example of data obtained from a single subject is
shown to the right of the figure. The dashed vertical line denotes the onset of the perturbation. EMG and ankle trajectory data were averaged from 28 trials, and fascicle length
was averaged from 3 trials. Black traces represent control trials (i.e. unperturbed walking) and gray traces represent perturbed trials. Figure adapted from Sinkjaer et al.
(1996) and Cronin et al. (2009b).
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in gamma drive. Regardless of the mechanism(s), these changes
highlight the ability of the central nervous system to regulate
movement by continually compensating for changes in afferent
input.

As well as examining walking speed dependence of neurome-
chanical responses, we have investigated time dependence using
a prolonged walking protocol. After a 1 h period of repeated pas-
sive stretching in an ankle dynamometer, Avela et al. (1999) re-
ported that SLR amplitude decreased by approximately 80% in
the human Sol muscle. This was attributed to a reduction in Ia
afferent activity as a result of an increase in tendinous tissue com-
pliance (see also Avela et al., 2004; Wilson et al., 1997). After walk-
ing for approximately 75 min, we observed a similar, short-lasting
effect, whereby the amplitude of SLR responses to perturbations
decreased by 33% (Cronin et al., 2009a), and the amplitude of the
medium latency reflex (MLR), which is thought to be predomi-
nantly mediated by length-sensitive type II afferents (e.g. Grey
et al., 2001; Schieppati and Nardone, 1997), decreased by 25%.
Since these changes correlated with decreases in fascicle stretch
velocity and amplitude, respectively, it was concluded that the de-
creased reflex responses could be explained by an increase in the
compliance of tendinous tissues in Sol, which decreases fascicle
stretch, and presumably leads to a decrease in muscle spindle
afferent output (see also Avela et al., 1999, 2004).

8. Afferent contribution to background locomotor activity in
walking

Studying how the sensory afferent information is integrated in
the spinal cord and contributes to the locomotor activity during
normal ‘‘unperturbed” gait poses some intriguing difficulties. For
example, even the relatively simple monosynaptic group Ia path-
way, giving rise to the SLR response after rapid soleus stretches,
is under the influence of descending pre-synaptic inhibition. Mori-
ta et al. (1998) showed that the temporal characteristics of the
afferent volleys are key factors affecting neural integration. The ef-
fect of pre-synaptic inhibition on the monosynaptic group Ia path-
way is significantly altered depending on the temporal dispersion
of the afferent activity. Therefore, the rapid stretch of a muscle or
the electrical analogue, the H-reflex, can only provide evidence
for spinal integration of temporally similar responses. Hence, the
stretch reflex data are valid for corrective responses to unexpected
perturbations but may not give an estimate of the afferent contri-
bution to the ongoing EMG activation in unperturbed steps (Niel-
sen and Sinkjaer, 2002; Sinkjaer et al., 2000). This limitation can
be overcome by at least two experimental paradigms that our
group has explored: removing the afferent feedback or investigat-
ing the afferent feedback in a natural setting.

8.1. Investigating afferent feedback using natural perturbations

Our group initially attempted to mimic natural variations in the
ground surface by imposing small-amplitude, low-velocity pertur-
bations on the ankle joint (Mazzaro et al., 2005). The imposed
enhancements and reductions in dorsiflexion velocity produced
concomitant changes in soleus locomotor activity that were clearly
dependent on muscle spindle afferent input (Mazzaro et al., 2005,
2006). However, as the use of dorsiflexion perturbations would re-
late to stepping on an unstable moving surface, and since current
microneurography techniques do not permit recording of the affer-
ent activity during human walking, we could not ignore the risk
that the afferent activity was integrated differently at the spinal le-
vel during these perturbations. Hence, a more commonly encoun-
tered walking environment was mimicked, i.e. walking over a
stable, uneven ground surface. This condition was achieved by ask-
ing the subject to walk over small, unpredictable inclinations in the
ground surface (af Klint et al., 2008).

A hydraulically actuated platform rotated 6± 3� in the parasag-
ittal plane before the subject touched down, creating a small in-
cline or decline in the supporting surface for one step (Fig. 3a
and b). The graded contribution to locomotor activity was assessed
by monitoring plantar flexor muscle activity. To estimate the effect
on the muscle spindle afferents and Golgi tendon organs, US was
used to assess muscle fascicle and Achilles tendon lengths as the
subject stepped on the inclined surface. The small changes in the
supporting surface were enough to elicit a graded change in the



Fig. 3. Experimental setup (a): the subjects walked over a hydraulically actuated platform (I) that could rotate in the parasagittal plane or accelerate downwards. Triceps
surae muscle activity (II), knee and ankle goniometry (III) were acquired in synchrony with muscle fascicle behaviour of gastrocnemius medialis (GM) and soleus (Sol)
acquired using ultrasonography (IV). Natural perturbation (b): the platform was moved into a rotated configuration prior to the subjects’ heel contact. The subjects wore
taped glasses preventing any compensatory movement (a, V). The rotations in the parasagittal plane were very small, 6±3� (�3�: dotted blue; 0�: thick gray; +3�: thin red). An
example of the ensemble averages of three representative trials are shown for each rotation of the platform for a single subject. The changes in muscle activity and muscle
fascicle behaviour were analysed in a window from 15% to 60% of the stance phase (shaded area). Across all subjects the muscle activity, estimated Achilles tendon force and
muscle fascicle length increased for the uphill condition and decreased for the downhill condition. However, no significant changes were found for muscle fascicle
lengthening velocity. Breaking the feedback loop (c): The platform was accelerated downwards at 0.9 g in mid/late stance, drastically decreasing the load on the ankle joint.
An example is shown of ensemble averages of soleus muscle activity and fascicle length from a representative subject as the platform was dropped in late stance. At a latency
of 42 ms (48 ± 7 ms for all subjects) after the perturbation, i.e. after the ground reaction force decreased (0 ms), the muscle activity of soleus was disfacilitated (shaded area).
However, the change at the muscle fascicle level was significantly delayed (54 ms; af Klint et al., 2010). Based on the latency between the changes in muscle fascicle length
and the changes in soleus activity, it is concluded that a decrease in length-sensitive group II afferent activity is unlikely to contribute to the disfacilitation of the soleus.
Figure adapted from af Klint et al., 2010. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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locomotor activity of the triceps surae muscles. This serves to com-
pensate for the slope of the supporting surface, and is most likely
proprioceptive in nature (af Klint et al., 2008). The lengthening
velocity of the muscle fascicles did not show a clear relationship
to either the inclination of the platform or the changes in locomo-
tor activity, indicating that the modulation of locomotor activity is
unlikely to be caused by a contribution from the group Ia afferents.
However, a positive correlation was found between the muscle
activity changes and the changes in muscle fascicle and Achilles
tendon length, indicating that both group II and group Ib afferents
could contribute in a graded manner to the locomotor activity dur-
ing walking (af Klint et al., 2010).

These experiments showed that muscle activity is modulated
by proprioceptive afferent input. Using US to monitor muscle fas-
cicle behaviour and Achilles tendon length throughout the stance
phase gave a better understanding of the length changes that the
spindles undergo, and the changes in force level sensed by the Gol-
gi tendon organs. This was essential to give a better understanding
of the influence that these small, natural perturbations have on the
muscle structures, as well as the influence on afferent activity.

8.2. Breaking the feedback loop

Transiently removing the proprioceptive afferent feedback, or
breaking the feedback loop, has been accomplished by eliciting ra-
pid plantar flexion perturbations in late stance during treadmill
walking (Grey et al., 2004, 2007; Sinkjaer et al., 2000). The rapid
plantar flexion would drastically decrease the afferent firing rates
of muscle spindles and GTOs in the triceps surae muscles as mus-
cle–tendon length is drastically shortened and the load on the
Achilles tendon is removed. The afferent contribution to locomotor
activity can then be estimated based on the amount of disfacilita-
tion in the muscle activity following the unloading perturbation.
This depression in soleus activity was termed the ‘‘unload re-
sponse” by Sinkjaer et al. (2000), and was not influenced by an
anaesthetic block of muscle and cutaneous afferents from the foot
and ankle (Grey et al., 2004), ischemic depression of the largest
group I afferents, or a common peroneal nerve block (Sinkjaer
et al., 2000). This implies that autogenic group Ia activity, cutane-
ous and muscle afferents from the foot and ankle, and reciprocal
inhibition from the tibialis anterior (TA) do not contribute to the
reduced soleus EMG following the plantar flexion perturbations.
Therefore, the unload response may arise from decreasing activity
in either the excitatory force-sensitive group Ib afferent pathway,
or the excitatory length-sensitive group II afferent pathway.

Though at first the group II afferent pathway was favoured, the
later evidence suggests a group Ib afferent contribution to the un-
load response (Grey, 2004, 2007). However, these studies were
based on muscle–tendon length changes that may not be represen-
tative of the sensory modalities to which muscle spindles and GTOs
are most sensitive (Maas and Lichtwark, 2009). In order to separate
the two proprioceptive sensory modalities, the unload experiment
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evolved from a single joint rotation of the ankle to a drastic de-
crease in ground reaction force in stance whilst monitoring the
muscle fascicle behaviour (see Fig. 3a and c). Subjects stepped on
a platform that was rapidly accelerated downwards to decrease
the ground reaction force in mid and late stance. At a latency of
48 ± 7 ms after the perturbation, i.e. after ground reaction force de-
creased, the muscle activity of soleus was disfacilitated (af Klint
et al., 2010). The shortening of the MTU and muscle fascicles were
significantly delayed with respect to the perturbation. Based on the
observed event latencies, it was concluded that the excitatory
group Ib pathway was the most likely proprioceptive afferent path-
way contributing to the unload response, as the latency between
muscle fascicle shortening and the change in muscle activity was
too short for group II afferents to contribute (af Klint et al., 2010).

This experiment showed that positive force feedback contrib-
utes to soleus muscle activity during walking. In combination with
data obtained from investigations using natural perturbations, it
seems likely that the regulation of muscle activity during gait is
at least partly driven by force feedback. These conclusions are
not new, and others have previously postulated the presence of a
similar connectivity during walking (Dietz et al., 1992; Faist
et al., 2006; Grey et al., 2007). However, when using mechanical
perturbations, a better understanding of the influence on the mus-
cle fascicles is essential, even when these drastic perturbations are
used. Basing the conclusions solely on muscle–tendon behaviour
would have over-estimated the latency of the length changes,
and thus the latency of the change in muscle spindle output.
Hence, high frame rate ultrasonography was instrumental in deter-
mining which afferents contribute to the locomotor activity.
9. Conclusions

In human walking, afferent feedback makes an important con-
tribution to muscle activity, both in response to sudden perturba-
tions (via stretch reflex activation) and during unconstrained
walking. Ultrasound data recorded during human walking suggest
that fascicle and tendon length changes are altered with changes in
experimental parameters (e.g. walking speed). These changes are
likely to influence the firing behaviour of sensory afferents in the
muscle and tendinous tissues, and may thus affect motor control.

It is important to note that muscle fascicle length changes may
not be a direct representation of changes in muscle spindle afferent
activity (e.g. Hoffer and Andreassen, 1981). However, in response
to rapid perturbations, we have observed a clear relationship be-
tween fascicle stretch velocity and velocity-sensitive SLR ampli-
tude, and between fascicle stretch amplitude and predominantly
length-sensitive MLR responses (Cronin et al., 2009a). Further-
more, in overground walking, stepping onto a surface that is in-
clined or declined by 3� reveals discernible lengthening or
shortening of the fascicles (af Klint et al., 2010). Consequently,
although ultrasound-derived fascicle lengths are unlikely to be a
perfect indicator of muscle spindle output, they are likely to be a
much better indicator of this parameter than changes in MTU
length (see also Maas and Lichtwark, 2009).

In addition to the data already obtained, there are numerous
fields of study that may benefit from the use of US to examine neu-
romechanical responses, one of the most prominent of which is
ageing. Since changes in tendon compliance and symptoms of sar-
copenia have been reported in old age (Magnusson et al., 2008;
Narici and Maganaris, 2006; Reeves et al., 2006), as well as differ-
ences in fascicle behaviour between young and old subjects in the
lateral gastrocnemius muscle (Mian et al., 2007), it is logical to as-
sume that age-related differences may be present in other muscles.
The behaviour of synergistic muscles should also be thoroughly
investigated. The majority of studies using US have only reported
data from one muscle, and there is a growing body of evidence sug-
gesting that muscles assumed to be synergists exhibit differences
in behaviour during walking, and that these differences may be
functionally relevant for motor control.

This review has focussed on the effects of muscle–tendon
mechanics on sensory afferent feedback, which itself represents
just one sub-section of the broader issue of motor control during
walking. Clearly, significant gaps are still evident in our knowledge.
Until relatively recently, the study of neuromechanics during walk-
ing was limited to animal experiments. Although this work has
markedly improved our conceptual understanding, the use of US
imaging to study muscle–tendon behaviour in humans has helped
to further our understanding of the complex control of bipedal
walking. Nonetheless, there is clearly still a need for more direct
methods to study both neural and mechanical parameters during
human movement.
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